Skip to main content

β-Cell Dysfunction and Chronic Hyperglycaemia

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Part of the book series: Endocrine Updates ((ENDO,volume 11))

  • 172 Accesses

Abstract

Type 2 diabetes mellitus is a complex illness with both genetic and environmental pathogenic elements. Disturbed insulin secretion(ß-cell dysfunction)and tissue insulin insensitivity(insulin resistance)are jointly found, and there is controversy as to which comes first, and how they interact to lead to diabetes mellitus. Studies in high risk populations for type 2 diabetes have delineated the natural history of type 2 diabetes mellitus (Figure 1): yet undefined genetic mutation(s) combine with metabolic and lifestyle factors to cause the diabetes phenotype. Insulin resistance and 0-cell dysfunction are shown at the bottom of Figure 1: they are present to some degree before glucose intolerance is detectable. The environmental factors aggravate insulin resistance (obesity, inactivity, aging, and pregnancy) or the 13-cell dysfunction (electrolyte abnormalities, several drugs, and malnutrition). However, the insulin resistance typically worsens little during the early stages of the disease, when glucose intolerance progresses to overt fasting hyperglycaemia. Instead, the factor determining whether diabetes occurs is 0-cell function. As long as 0-cells compensate for the insulin resistance through increased insulin secretion, glycaemia can be controlled. Frank diabetes is seen when the 0-cell compensation is lost — i.e.ß-cell failure(1-3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leahy JL. Natural history of p-cell dysfunction in NIDDM. Diabetes Care 1990;13:992–1010.

    Article  PubMed  CAS  Google Scholar 

  2. Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Charles MA, Bennett PH. A two-step model for development of non-insulin dependent diabetes. Am J Med 1991;90:229–235.

    PubMed  CAS  Google Scholar 

  3. Beck-Neilsen H, Groop LC. Metabolic and genetic characterization of prediabetic state. Sequence of events leading to non-insulin dependent diabetes mellitus. J Clin Invest 1994;94:1714–1721.

    Article  Google Scholar 

  4. Turner RC, Holman RR. Beta-cell function during insulin or chlorpropamide treatment of maturity-onset diabetes mellitus. Diabetes 1978;27(Suppl 1):241–246.

    PubMed  CAS  Google Scholar 

  5. Kosaka K, Kuzuya T, Akanuma Y, Hagura R. Increase in insulin response after treatment of overt maturity-onset diabetes is independent of the mode of treatment. Diabetologia 1980;18:23–28.

    Article  PubMed  CAS  Google Scholar 

  6. Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care 1990;13:610–630.

    Article  PubMed  CAS  Google Scholar 

  7. Yki-Järvinen H. Glucose toxicity. Endocr Rev 1992;13:415–431.

    PubMed  Google Scholar 

  8. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 1995;44:863–870.

    Article  PubMed  CAS  Google Scholar 

  9. Prentki M, Corkey BE. Are the a-cell signalling molecules malonyl CoA and cytosolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 1996;45:273–283.

    Article  PubMed  CAS  Google Scholar 

  10. Kahn SE, Andrikopoulos S, Verchere CB. Islet amyloid: a long recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 1999;48:241–253.

    Article  PubMed  CAS  Google Scholar 

  11. Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998;47:358–364.

    Article  PubMed  CAS  Google Scholar 

  12. Leahy JL. p-cell dysfunction with chronic hyperglycaemia: the “overworked p-cell” hypothesis. Diabetes Revs 1996;4:298–319.

    Google Scholar 

  13. Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 1983;71:1544–1553.

    Article  PubMed  CAS  Google Scholar 

  14. Leahy JL, Bumbalo LM, Chen C. Beta-cell hypersensitivity for glucosep re cedesloss of glucose-induced insulin secretion in 903ó pancreatectomized rats. Diabetologia 1993;36:1238–1244.

    Article  PubMed  CAS  Google Scholar 

  15. Leahy JL, Bumbalo LM, Chen C. Diazoxide causes recovery of p-cell glucose responsiveness in 90% pancreatectomized diabetic rats. Diabetes 1994;43:173–179.

    Article  PubMed  CAS  Google Scholar 

  16. Sako Y, Grill VE. Coupling of a-cell desensitization by hyperglycaemia to excessive stimulation and circulating insulin in glucose-infused rats. Diabetes 1990;39:1580–1583.

    Article  PubMed  CAS  Google Scholar 

  17. Hosokawa YA, Hosokawa H, Chen C, Leahy JL. Mechanism of impaired glucose-potentiated insulin secretion in diabetic 90% pancreatectomy rats: Study using GLP-1 (7–37). J Clin Invest 1996;97:180–186.

    Article  PubMed  CAS  Google Scholar 

  18. Hosokawa YA, Leahy JL. Parallel reduction of pancreas insulin content and insulin secretion in 48h tolbutamide-infused normoglycaemic rats. Diabetes 1997;46:808–813.

    Article  PubMed  CAS  Google Scholar 

  19. Björklund A, Grill V. β-cell insensitivity in vitro: reversal by diazoxide entails more than one event in stimulus-secretion coupling. Endocrinology 1993;132:1319–1328.

    Article  PubMed  Google Scholar 

  20. Ling Z, Kiekins R, Mahler T, Schuit FC, Pipeleers-Marichal M, Sener A, Klöppel G, Malaisse WJ, Pipeleers DG. Effects of chronically elevated glucose levels on the functional properties of rat pancreatic (3-cells. Diabetes 1996;45:1774–1782.

    Article  PubMed  CAS  Google Scholar 

  21. Greenwood RH, Mahler RF, Hales CN. Improvement in insulin secretion in diabetes after diazoxide. Lancet 1976;1:444–447.

    Article  PubMed  CAS  Google Scholar 

  22. Féry F, Balasse EO. Glucose metabolism during the starved-to-fed transition in obese patients with NIDDM. Diabetes 1994;43:1418–1425.

    Article  PubMed  Google Scholar 

  23. Laedtke T, Schmitz O, Porksen N, Veldhuis J, Butler P. Mechanism of impaired pulsatile insulin secretion in NIDDM? Diabetes 1996;45(Suppl. 2):40A.

    Google Scholar 

  24. Chen C, Hosokawa H, Bumbalo LM, Leahy IL. Mechanism of compensatory hyperinsulinemia in normoglycaemic insulin resistant SHR rats: augmented enzymatic activity of glucokinase in p-cells. J Clin Invest 1994;94:399–404.

    Article  PubMed  CAS  Google Scholar 

  25. Chen C, Bumbalo LM, Hosokawa H, Leahy JL. Increased catalytic activity of glucokinase in isolated islets from hyperinsulinemic rats. Diabetes 1994;43:684–689.

    Article  PubMed  CAS  Google Scholar 

  26. Leahy JL, Liu YQ, Sun X-J, Nevin PW. p-cell adaptation in normoglycaemic 6O3ó pancreatectomy rats: increased islet glucokinase activcity and IRS-2 content. Diabetes 1999;48(Suppl. 1):A236.

    Google Scholar 

  27. Tiedge M, Steffeck H, Elsner M, Lenzen S. Metabolic regulation, activity state, and intracellular binding of glucokinase in insulin secreting cells. Diabetes 1999;48:514–523.

    Article  PubMed  CAS  Google Scholar 

  28. Parsons JA, Brelje TC, Sorenson RL. Adaption of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 1992;130:1459–1466.

    Article  PubMed  CAS  Google Scholar 

  29. Sorenson RL, Breije TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1997;29:301–307.

    Article  PubMed  CAS  Google Scholar 

  30. Milburn JL Jr, Hirose H, Lee YH, Nagasawa Y, Ogawa A, Ohneda M, BeltrandelRio H, Newgard CB, Johnson JH, Unger RH. Pancreatic I3-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J Biol Chem 1995;270:1295–1299.

    Article  PubMed  CAS  Google Scholar 

  31. Hosokawa H, Corkey BE, Leahy JL. Beta-cell hypersensitivity to glucose following 24-h exposure of rat islets to fatty acids. Diabetologia 1997;40:392–397.

    Article  PubMed  CAS  Google Scholar 

  32. Zhou YP, Grill VE. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 1994;93:870–876.

    Article  PubMed  CAS  Google Scholar 

  33. Liu YQ, Tornheim K, Leahy JL. Shared biochemical properties of glucotoxicity and lipotoxicity in islets to lower citrate synthase activity and increase phosphofructokinase activity. Diabetes 1998;47:1889–1893.

    Article  PubMed  CAS  Google Scholar 

  34. Liu YQ, Tomheim K, Leahy JL. Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phosphate content. J Clin Invest 1998;101:1870–1875.

    Article  PubMed  CAS  Google Scholar 

  35. Giroix M-H, Sener A, Pipeleers DG, Malaisse WJ. Hexose metabolism in pancreatic islets. Inhibition of hexokinase. Biochem J 1984;223:447–453.

    PubMed  CAS  Google Scholar 

  36. Hosokawa H, Hosokawa YA, Leahy JL. Upregulated hexokinase activity in isolated islets from diabetic 90% pancreatectomized rats. Diabetes 1995;44:1328–1333.

    Article  PubMed  CAS  Google Scholar 

  37. Cockburn BN, Ostrega DM, Stuns J, Kubstrup K, Polonsky KS, Bell GI. Changes in pancreatic islet glucokinase and hexokinase activities with increasing age, obesity, and the onset of diabetes. Diabetes 1997;46:1434–1439.

    Article  PubMed  CAS  Google Scholar 

  38. Olson LK, Sharma A, Peshavaria M, Wright CV, Towle HC, Robertson RP, Stein R. Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression. Proc Natl Acad Sci USA 1995;92:9127–9131.

    Article  PubMed  CAS  Google Scholar 

  39. Robertson RP, Olson LK, Zhang H-J. Differentiating glucose toxicity from glucose desensitization: a message from the insulin gene. Diabetes 1994;43:1085–1089.

    Article  PubMed  CAS  Google Scholar 

  40. Zangen DH, Bonner-Weir S, Lee CH, Latimer JB, Miller CP, Habener JF, Weir GC. Reduced insulin, GLUT2, and IDX-1 in a-cells after partial pancreatectomy. Diabetes 1996;46:258–264.

    Article  Google Scholar 

  41. Ashcroft SJH. Glucoreceptor mechanism and the control of insulin release and biosynthesis. Diabetologia 1980;18:5–15.

    Article  PubMed  CAS  Google Scholar 

  42. Schuit FC, Kickens R, Pipeleers DG. Measuring the balance between insulin synthesis and insulin release. Biochem Biophys Res Comm 1991;178:1182–1187.

    Article  PubMed  CAS  Google Scholar 

  43. Leahy JL, Fineman MS. Impaired phasic insulin and amylin secretion in diabetic rats. Am J Physiol 1998;38:E457–62.

    Google Scholar 

  44. Gedulin B, Cooper GJ, Young AA. Amylin secretion from the perfused pancreas: dissociation from insulin and abnormal elevation in insulin-resistant diabetic rats. Biochem Biophys Res Commun 1991;180:782–789.

    Article  PubMed  CAS  Google Scholar 

  45. Inoue K, Hisatomi A, Umeda F, Nawata H. Relative hypersecretion of amylin to insulin from rat pancreas after neonatal STZ treatment. Diabetes 1992;41:723–727.

    Article  PubMed  CAS  Google Scholar 

  46. Butler PC, Chou J, Carter WB, Wang YN, Bu BH, Chang D, Chang JK, Rizza R. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 1990;39:752–756.

    Article  PubMed  CAS  Google Scholar 

  47. Kautzky-Willer A, Thomaseth K, Ludvik B, Nowotny P, Rabensteiner D, Waldhäusl W, Pacini G, Prager R. Elevated islet amyloid pancreatic polypeptide and proinsulin in lean gestational diabetes. Diabetes 1997;46:607–614.

    Article  PubMed  CAS  Google Scholar 

  48. Rhodes CJ, Alarcón C. What beta-cell defect could lead to hyperproinsulinemia in NIDDM? Some clues from recent advances made in understanding the proinsulin-processing mechanism. Diabetes 1994;43:511–517.

    Article  PubMed  CAS  Google Scholar 

  49. Koivisto VA, Yki-Jarvinen H, Harding SV, Pelkonen R. The effect of exogenous hyperinsulinemia on proinsulin secretion in normal man, obese subjects, and patients with insulinoma. J Clin Endocrinol Metab 1986;63:1117–20.

    Article  PubMed  CAS  Google Scholar 

  50. Leahy JL, Halban PA, Weir GC. Relative hypersecretion of proinsulin in a rat model of non-insulindependent diabetes mellitus. Diabetes 1991;40:985–989.

    Article  PubMed  CAS  Google Scholar 

  51. Gadot M, Leibowitz G, Shafrir E, Cerasi E, Gross DJ, Kaiser N. Hyperproinsulinemia and insulin deficiency in the diabeticPsammomys obesus.Endocrinology 1994;135:610–616.

    Article  PubMed  CAS  Google Scholar 

  52. Kahn SE, Halban PA. Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes 1997;46:1725–1732.

    Article  PubMed  CAS  Google Scholar 

  53. Leahy JL. Increased proinsulin/insulin ratio in pancreas extracts of hyperglycaemic rats. Diabetes 1993;42:22–27.

    Article  PubMed  CAS  Google Scholar 

  54. Gadot M, Ariav Y, Cerasi E, Kaiser N, Gross DJ. Hyperproinsulinemia in the diabeticPsammomys obesus isa result of increased secretory demand on the13-cell. Endocrinology 1995;136:4218–4223.

    Article  PubMed  CAS  Google Scholar 

  55. Alarcón C, Leahy JL, Schuppin GT, Rhodes CJ. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose-infusion rat model of non insulin dependent diabetes mellitus. J Clin Invest 1995;95:1032–1039.

    Article  PubMed  Google Scholar 

  56. Sreenan S, Sturis J, Pugh W, Burant CF, Polonsky KS. Prevention of hyperglycaemia in the Zucker diabetic fatty rat by treatment with metformin or troglitazone. Am J Physiol 1996;34:E742–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leahy, J.L. (2001). β-Cell Dysfunction and Chronic Hyperglycaemia. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics