Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 484))

Abstract

Extracellular signal transduction pathways in blood are often composed of cascades of serine proteinases to amplify rapidly a response to wounding or infection. The vertebrate blood coagulation and complement pathways are the most fully characterized of such proteinase cascades. Serine proteinases also play important roles in defensive responses in hemolymph of arthropods. The hemolymph coagulation system of horseshoe crabs has been very nicely elucidated to function as a complex and intricately regulated proteinase cascade for protection against microbial infection (Kawabata et al., 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, T., Fujitani, N., Hayakawa, Y., Ohnishi, A., Ohkubo, T., Kumaki, Y., Kawano, K., Hikichi, K., and Nitta, K. (1999) Solution structure of an insect growth factor, growth-blocking peptide. J. Biol. Chem. 274, 1887–1890.

    Article  PubMed  CAS  Google Scholar 

  • Ashida, M., and Brey, P.T. (1998) Recent advances on the research of the insect prophenolxidase cascade. In Molecular Mechanisms oflmmuneResponses in Insects (Brey, P.T. and Hultmark, D. eds.), Chapman & Hall, London pp.135–172.

    Google Scholar 

  • Belvin, M. and Anderson, K. (1996) A conserved signaling pathway: the Drosophila Toll-dorsal pathway. Ann. Rev. Cell. Dev. Biol. 12: 393–416.

    Article  CAS  Google Scholar 

  • Chain, B.M. and Anderson, R.S. (1983) Inflammation in insects: the release of a plasmatocyte depletion factor following interaction between bacteria and haemocytes. J. Insect Physiol. 29, 1–4.

    Article  Google Scholar 

  • Clark, K.D., Pech, L.L., and Strand, M.R. (1997) Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440–23447.

    Article  CAS  Google Scholar 

  • Clark, K.D., Witherell, A., and Strand, M.R. (1998) Plasmatocyte spreading peptide is encoded by an mRNA differentially expressed in tissues of the moth Pseudoplusia includens. Bioch. Biochem. Res. Commun. 250, 479–485.

    Article  CAS  Google Scholar 

  • Finnerty, C.M., Karplus, P.A., and Granados, R.R. (1999) The insect immune protein scolexin is a novel serine proteinase homolog. Protein Sci. 8:242–248.

    Article  PubMed  CAS  Google Scholar 

  • Geng, C. and Dunn, P.E. (1989) Plasmatocyte depletion in larvae of Manduca sexta following injection of bacteria. Dev. Comp. Immunol. 13, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, Y. (1991) Structure of a growth-blocking peptide present in parasitized insect hemolymph. J.Biol.Chem. 266, 7982–7982.

    PubMed  CAS  Google Scholar 

  • Hayakawa, Y., Ohnishi, A., Yamanaka, A., Izumi, S., and Tomino, S. (1995) Molecular cloning and characterization of cDNA for insect biogenic peptide, growth blocking peptide. FEBS Lett. 376, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, J. and Reichhart, J. (1997) Drosophila immunity. Trends Cell Biol. 7: 309–316.

    Article  CAS  Google Scholar 

  • Jiang, H. and Kanost, M.R. (1999) The clip domain family of serine proteinases from arthropod hemolymph. Insect Biochem. Molec. Biol. In press.

    Google Scholar 

  • Jiang H., Wang, Y., Huang, Y., Mulnix, A.B., Kadel, J., Cole, K., and Kanost, M.R. (1996) Organization of serpin gene-1 from Manduca sexta: evolution of a family of alternate exons encoding the reactive site loop. J. Biol. Chem. 271: 28017–28023

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H. and Kanost, M.R. (1997) Characterization and functional analysis of 12 naturally occurring reactive site variants of serpin-1 from Manduca sexta. J. Biol. Chem. 272: 1082–1087.

    Article  CAS  Google Scholar 

  • Jiang, H., Wang, Y., and Kanost, M.R. (1998) Pro-phenol oxidase activating proteinasc from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc. Nat!. Acad. Sci. USA 95, 12220–12225.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H., Wang, Y., and Kanost, M.R. (1999) Four serine proteinases expressed in Manduca sexta haemocytes. Insect Mol. Biol. 8, 39–53.

    Article  PubMed  CAS  Google Scholar 

  • Kanost, M.R. and Jiang, H. (1996) Proteinase inhibitors in invertebrate immunity. In “New Directions in Invertebrate Immunology”, (K. Söderhäll, S. Iwanaga and G. Vasta, eds.) SOS Publications, Fair Haven, NJ. pp. 155–173.

    Google Scholar 

  • Kanost, M.R. and Jiang, H. (1997) Serpins from an insect, Manduca sexta. In “Chemistry and Biology of Serpins”, (F.C. Church, D.D. Cunningham, D. Ginsburg, M. Hoffinan, S.R. Stone, and D.M. Tollefsen, eds.) Plenum, New York, pp. 155–161.

    Chapter  Google Scholar 

  • Kanost, M.R., Prasad, S.V. and Wells, M.A. (1989) Primary structure ofa member of the serpin superfamily of proteinase inhibitors from an insect, Manduca sexta. J. Biol. Chem. 264, 965–972.

    CAS  Google Scholar 

  • Kawabata, S., Muta, T. and Iwanaga, S. (1996) The clotting cascade and defense molecules found in the hemolymph of the horseshoe crab. In “New Directions in Invertebrate Immunology”, (K. Söderhäll, S. Iwanaga and G. Vasta, eds.) SOS Publications, Fair Haven, NJ. pp. 255–283.

    Google Scholar 

  • Lee, S.Y., Cho, M.Y., Hyun, H.H., Lee, K.M., Homma, K., Natori, S., Kawabata, S., Iwanaga, S., and Lee, B.L. (1988) Molecular cloning of cDNA for pro-phenol-oxidase activating factor I, a serine proteinase is induced by lipopolysaccharide or 1,3-B-glucan in a coleopteran insect, Holotrichia diamphalia larvae. Eur. J. Biochem. 257, 615–621.

    Article  Google Scholar 

  • Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Wang, Z., Canagarajah, B., Jiang, H., Kanost, M., and Goldsmith, E.J. (1999) The structure of active serpin 1K from Manduca sexta. Structure 7, 103–109.

    Article  CAS  Google Scholar 

  • Satoh, D., Horii, A., Ochiai, M., and Ashida, M. (1999) Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori: purification, characterization and cDNA cloning. J Biol. Chem. 274, 7441–7453.

    Google Scholar 

  • Skinner, W.S., Dennis, P.A, Li, J.P., Summerfelt, R.M., Carney, R.L., and Quistad, G.B. (1991) Isolation and identification of paralytic peptides from hemolymph of the lepidopteran insects Manduca sexta,Spodoptera exigua, and Heliothis virescens. J. Biol. Chem. 266, 12873–12877.

    PubMed  CAS  Google Scholar 

  • Söderhäll,K.,Ceranius,L. Johansson,M.W. (1996) The prophenoloxidase activating system in invertebrates. In “New Directions in Invertebrate Immunology”,(K. Söderhäll, S. Iwanga and G. Vasta,cds.) SOS Publications, Fair Haven,NJ. pp. 229–253.

    Google Scholar 

  • Turner, M. W. (1996) Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol. Today 17, 532–540.

    PubMed  CAS  Google Scholar 

  • Volkman, B.F., Anderson, M.E., Clark, K.D., Hayakawa, Y., Strand, M.R., and Markley, J.L. (1999) Structure of the insect cytokine peptide plasmatocyte-spreading peptide I from Pseudoplusia includens. J. Biol. Chem. 274, 4493–4496.

    Article  CAS  Google Scholar 

  • Wang, Y., Jiang, H. and Kanost, MR. (1999) Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor. Insect Biochem. Molec. Biol. In press.

    Google Scholar 

  • Yu, X.-Q., Prakash, O., and Kanost, M.R. (1999a) Structure of a paralytic peptide from an insect, Manduca sexta. J. Peptide Res. In press.

    Google Scholar 

  • Yu, X.-Q., Gan, H., and Kanost, M.R. (1999b) An inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochem. Molec. Biol. 29: 585–597.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanost, M.R., Jiang, H., Wang, Y., Yu, XQ., Ma, C., Zhu, Y. (2001). Hemolymph Proteinases in Immune Responses of Manduca sexta. In: Beck, G., Sugumaran, M., Cooper, E.L. (eds) Phylogenetic Perspectives on the Vertebrate Immune System. Advances in Experimental Medicine and Biology, vol 484. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1291-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1291-2_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5481-9

  • Online ISBN: 978-1-4615-1291-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics