Skip to main content

Abstract

In practice, noise is present in all measurements, and FROG measurements are no exception. As a result, it’s important to ask several questions with regard to FROG [1]: How well does the FROG-retrieval algorithm retrieve the pulse in the presence of such noise? Does it always converge? If so, then what errors can be expected in the retrieved pulse intensity and phase versus time for a given noise level in the experimental FROG trace? What additional numerical techniques can be incorporated to improve the retrieval? Finally, can one calculate error bars on the retrieved intensity and phase for a noisy experimental FROG trace? If so, how?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera, “Noise sensitivity in frequency-resolved optical-gating measurements of ultrashort pulses,” Journal of the Optical Society of America B 12, 1955–67 (1995).

    Article  ADS  Google Scholar 

  2. K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections.,” Optics Letters 19, 2152–4 (1994).

    Article  ADS  Google Scholar 

  3. R. Trebino and D. J. Kane, “Using Phase Retrieval to Measure the Intensity and Phase of Ultrashort Pulses: Frequency-Resolved Optical Gating,” J. Opt. Soc. Amer. A 10, 1101–11 (1993).

    Article  ADS  Google Scholar 

  4. K. W. DeLong and R. Trebino, “Improved Ultrashort-Pulse Retrieval Algorithm for Frequency-Resolved Optical Gating,” Journal of the Optical Society of America A 11, 2429–37 (1994).

    Article  ADS  Google Scholar 

  5. H. Stark, “Image Recovery: Theory and Application,” (Academic Press, Orlando, 1987).

    Google Scholar 

  6. Jae S. Lim, Two-dimensional signal and image processing (Prentice Hall, Englewood Cliff, New Jersey, 1990).

    Google Scholar 

  7. R. R. Coifman and D. L. Donoho, “Translation-Invariant De-Noising” in Wavelets and Statistics,” edited by Anestis Antoniadis (Springer-Verlag Lecture Notes, 1995).

    Google Scholar 

  8. David L. Donoho, “Wavelet Shrinkage and W.V.D-A Ten-Minute Tour,” Stanford University Tech. Rep. 416 (Stanford University, Stanford, California, January 1993).

    Google Scholar 

  9. M. A. Krumbugel, K. W DeLong, D. N. Fittinghoff, J. N. Sweetser, and R. Trebino, “Wavelet noise reduction for frequency-resolved-optical-gating measurements of ultrashort laser pulses,” presented at the Wavelet Applications III, Orlando, FL, USA, 1996.

    Google Scholar 

  10. B. Efron and Tibshirani, Science 253, 390 (1991).

    Article  ADS  Google Scholar 

  11. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (University Press, Cambridge, 1992).

    MATH  Google Scholar 

  12. D. J. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE Journal of Selected Topics in Quantum Electronics 4, 278-84 (1998).

    Article  Google Scholar 

  13. D. J. Kane, “Recent progress toward real-time measurement of ultrashort laser pulses,” IEEE Journal of Quantum Electronics 35, 421–31 (1999).

    Article  ADS  Google Scholar 

  14. D. J. Kane, private communication.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fittinghoff, D.N., Munroe, M. (2000). Noise: Its Effects and Suppression. In: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1181-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1181-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5432-1

  • Online ISBN: 978-1-4615-1181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics