Skip to main content

The Role of Dopamine Receptors in Regulating the Size of Axonal Arbours

  • Chapter
The Basal Ganglia VII

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 52))

Abstract

Neurones in the adult central nervous system can form new synapse and branches1-3. These changes can also be seen following injury to the striatum or the Substantia Nigra pars compacta (SNpc) and include the formation of new synaptic terminals, growth-cones, neunte formation, increased number of tyrosine hydroxylase immunoreactive (TH-ir) hypertrophic fibres penetrating the striatum and the upregulated expression of factors that support neunte outgrowth and cell survival4-12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Fagan and F.H. Gage, Mechanisms of sprouting in the adult central nervous system: cellular responses in areas of terminal degeneration and reinnervation in the rat hippocampus. Neuroscience. 58(4): p. 705–725 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. M. Frotscher, B. Heimrich, and T. Deller, Sprouting in the hippocampus is layer-specific. TINS. 20: p. 218–223 (1997).

    PubMed  CAS  Google Scholar 

  3. G. Raisman and P.M. Field, A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res. 50(2): p. 241–264 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. D.I. Finkelstein, D. Stanic, C.L. Parish, D. Tomas, K. Dickson, and M.K. Flame. Axonal sprouting following lesions of the rat substantia nigra. Neuroscience. 97(1): p. 99–112 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. P.E. Batchelor, G.T. Liberatore, J.Y. Wong, M.J. Porritt, F. Frerichs, G.A. Donnan, and D.W. Howells, Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci. 19(5): p. 1708–16 (1999).

    PubMed  CAS  Google Scholar 

  6. V. Blanchard, P. Anglade, G. Dziewczapolski, M. Savasta, Y. Agid, and R. Raisman-Vozari, Dopaminergic sprouting in the rat striatum after partial lesion of the substantia nigra. Brain Res. 709(2): p. 319–325 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. V. Blanchard, M. Chritin, S. Vyas, M. Savasta, C. Feuerstein, Y. Agid, F. Javoy-Agid, and R. RaismanVozari, Long-term induction of tyrosine hydroxylase expression: compensatory response to partial degeneration of the dopaminergic nigrostriatal system in the rat brain. J. Neurochem. 64(4): p. 1669–1679 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. S.P. Onn, T.W. Berger, E.M. Stricker, and M.J. Zigmond, Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: histochemical and neurochemical analysis. Brain Res.. 376(1): p. 8–19 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. H.W. Cheng, J. Tong, and T.H. McNeill, Lesion-induced axon sprouting in the deafferented striatum of adult rat. Neuroscience Letters. 242(2): p. 69–72 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. G.T. Liberatore, D.I. Finkelstein, J.Y. Wong, M.K. Home, M.J. Porritt, G.A. Donnan, and D.W. Howells, Sprouting of dopaminergic axons after striatal injury: confirmation by markers not dependent on dopamine metabolism. Exp Neurol. 159(2): p. 565–73 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. A. Ho and M. Blum, Induction of interleukin-I associated with compensatory dopaminergic sprouting in the denervated striatum of young mice: model of aging and neurodegenerative disease. J Neurosci. 18(15): p. 5614–29 (1998).

    PubMed  CAS  Google Scholar 

  12. J. Thomas, J. Wang, H. Takubo, J. Sheng, S. de Jesus, and K.S. Bankiewicz, A 6-hydroxydopamineinduced selective parkinsonian rat model: further biochemical and behavioral characterization. Exp. Neurol. 126(2): p. 159–167 (1994).

    CAS  Google Scholar 

  13. C.L. Parish, Finkelstein, D.I and Home, M.K. The ultrastructure of nigrostriatal terminals following partial denervation of the substantia nigra pars compacta. in Proc. Aust. Neurosci. Soc. 2000. Melbourne, Austral ia.

    Google Scholar 

  14. C. Missale, S.R. Nash, S.W. Robinson, M. Jaber, and M.G. Caron, Dopamine receptors: from structure to function. Physiol Rev. 78(1): p. 189–225 (1998).

    PubMed  CAS  Google Scholar 

  15. D.M. Weiner, A.I. Levey, R.K. Sunahara, H.B. Niznik, B.F. O’Dowd, P. Seeman, and M.R. Brann, D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci USA. 88(5): p. 1859–63 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. C.R. Gerfen, M. Herkenham, and J. Thibault, The neostriatal mosaic: II. Patch-and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci. 7(12): p. 3915–3934 (1987).

    PubMed  CAS  Google Scholar 

  17. A. Bjorklund and O. Lindvall, Dopamine-containing systems in the CNS. Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS, Part 1, ed. A. Bjorklund and T. Hokfelt. Vol. 2. 1984, Amsterdam: Elsevier Science Publishers. 55–122.

    Google Scholar 

  18. J. Drago, P. Padungchaichot, D. Accili, and S. Fuchs, Dopamine receptors and dopamine transporter in brain function and addictive behaviors: insights from targeted mouse mutants. Dev Neurosci. 20(2–3): p. 188–203 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. J. Drago, C.R. Gerfen, J.E. Lachowicz, H. Steiner, T.R. Hollon, P.E. Love, G.T. Ooi, A. Grinberg, E.J. Lee, S.P. Huang, P.F. Bartlett, P.A. Jose, D.R. Sibley, and H. Westphal, Altered striatal function in a mutant mouse lacking DIA dopamine receptors. Proc Natl Acad Sci U S A. 91(26): p. 12564–8 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. J.H. Baik, R. Picetti, A. Saiardi, G. Thiriet, A. Dierich, A. Depaulis, M. Le Meur, and E. Borrelli, Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature. 377(6548): p. 424–8 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. C.L. Parish, D.I. Finkelstein, J. Drago, E. Borrelli, and M.K. Home, The role of dopamine receptors in regulating the size of axonal arbors. J Neurosci. 21(14): p. 5147–57. (2001).

    PubMed  CAS  Google Scholar 

  22. J.R. Cooper, F.E. Bloom, and R.H. Roth, The biochemical basis of neuropharmacology. 7th ed. 1996, New York: Oxford University Press.

    Google Scholar 

  23. E.R. Kandel, J.H. Schwartz, and T.M. Jessell. Principles of Neural Science. 3rd ed. 1991, New York: Elsevier.

    Google Scholar 

  24. I. Creese, Dopamine receptors explained. TJiv 5: p. 40–43 (1982).

    CAS  Google Scholar 

  25. A. Usiello, J.H. Baik, F. Rouge-Pont, R. Picetti, A. Dierich, M. LeMeur, P.V. Piazza, and E. Borrelli, Distinct functions of the two isoforms of dopamine D2 receptors. Nature. 408(6809): p. 199–203 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. Z.U. Khan, P. Koulen, M. Rubinstein, D.K Grandy. and P.S. Goldman-Rakic. An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Vail Acad Sci USA. 98(4): p. 1964–9. (2001).

    Article  CAS  Google Scholar 

  27. O. Rascol, D.J. Brooks, A.D. Korczyn, P.P. De Deyn, C.E. Clarke, and A.E. Lang, A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med. 342(20): p. 1484–91 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Horne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finkelstein, D.I., Parish, C.L., Stanic, D., Borrelli, E., Drago, J., Horne, M.K. (2002). The Role of Dopamine Receptors in Regulating the Size of Axonal Arbours. In: Nicholson, L.F.B., Faull, R.L.M. (eds) The Basal Ganglia VII. Advances in Behavioral Biology, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0715-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0715-4_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5207-5

  • Online ISBN: 978-1-4615-0715-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics