Skip to main content

Catalysis by Polyampholytes

  • Chapter
Book cover Polyampholytes
  • 197 Accesses

Abstract

The development of polymeric catalysts, which act likes enzymes is of great interest.1–6 Synthetic polyampholytes due to high content of functional groups and rich conformational liability are best candidate to design active and selective catalysts.7 Electrostatic interactions, hydrogen and coordination bonds, and hydrophobic entrapment can provide the selectivity of polyampholytes with respect to substrates. As compared with low molecular weight compounds, the reaction rate in the presence of polymeric catalysts is much higher, which is caused by a high local density of the functional groups in the bulk of the macromolecular coil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. C. G. Overberger, T. W. Smith, and K. W. Dixon, Catalysis by polymers, J.Polym.Sci.Polym.Symp. 50,1-15 (1975).

    Article  CAS  Google Scholar 

  2. T. Kunitake, in: Polymer Supported Reactions in Organic Synthesis, edited by P. Hodge and D.Sherrington, (J.Wiley and Sons, New York, 1980).

    Google Scholar 

  3. M. Kaneko and E. Tsuchida, J.Polym.Sci.Macromol.Rev. 16, 397 (1981).

    Article  CAS  Google Scholar 

  4. E. A. Bekturov, L. A. Bimendina, and S. E. Kudaibergenov, Polimernye Komplexy i Katalizatory (in Russian), (Nauka, Alma-Ata, 1982).

    Google Scholar 

  5. S. E. Kudaibergenov and E. A. Bekturov, Polymer catalysts, Vestn.Akad. Nauk KazSSR, 10, 10-16(1987).

    Google Scholar 

  6. E. A. Bekturov and S. E. Kudaibergenov, Kataliz Polimerami (in Russian), (Nauka, Alma-Ata, 1988).

    Google Scholar 

  7. E. A Bekturov and S. E. Kudaibergenov, Catalysis by Polymers, (Huthig and Wepf Verlag, Heidelberg,Oxford, CT/USA, 1996).

    Google Scholar 

  8. C. G. Overberger and H. Maki, Esterolytic catalysis by copolymers containing imidazole and carboxyl functions, Macromolecules 3, 214-220 (1970).

    Article  CAS  Google Scholar 

  9. V. B. Sigitov, S. E. Kudaibergenov, and E. A. Bekturov, Physico-chemical, complexing and catalytic properties of polyampholytes, Chemistry and Physics of Monomers and Polymers, 67, 111-136(1987).

    Google Scholar 

  10. E. A. Bekturov, S. E. Kudaibergenov, and V. B. Sigitov, Hydrolysis of p-nitrophenylacetate in the presence of polyampholytes, Abstr. of All-Union.Conf. on Catalytic Reactions in Liquid Phase, Alma-Ata, 1987, p.54-57.

    Google Scholar 

  11. M. Takeishi, O. Hara, S. Nino, and S. Hayama, Sequence distribution and solvolytic activity of copolymers containing imidazole groups, Macromolecules 12, 531-532 (1979).

    Article  CAS  Google Scholar 

  12. J. Tanaka and A. Yamada, Hydrolysis of phenyl esters catalyzed by alternating copolymers containing imidazolyl and carboxyl groups, Makromol.Chem. 184, 2041-2047 (1983).

    Article  CAS  Google Scholar 

  13. T. Kunitake and S. Shinkai, Imidazole catalyses in aqueous systems. VII. Enzymelike catalytic hydrolyses of phenyl esters by copolymers containing imidazole and carboxylate functions, Makromol.Chem. 151, 127-138 (1972).

    Article  CAS  Google Scholar 

  14. G. C. Overberger and C. J. Podsiadli, Conformational effects and cooperative interactions in poly[5(6)-vinylbenzimidazole]-catalyzed solvolyses of anionic, long-chain substrates, Bioorg.Chem. 3, 16-34 (1974).

    Article  CAS  Google Scholar 

  15. G. C. Overberger and C. J. Podsiadli Cooperative effects involved in esterolytic reactions of cationic chain esters catalyzed by benzimidazole-containing polymers, Bioorg. Chem. 3, 35-54 (1974).

    Article  CAS  Google Scholar 

  16. T. Shimidzu, A. Furuta, and Y. Nakamoto, Catalytic activity of poly(4(5)-vinylimidazole-co-acrylic acid) in the hydrolyses of 3-acetoxy-N-trimethylanilinium iodide and p-nitrophenyl acetate in aqueous solution, Macromolecules 7, 160-166 (1974).

    Article  CAS  Google Scholar 

  17. T. Shimidzu, A. Furuta, T. Watanabe, and S. Kato, Synthesis of poly[4(5)-vinylimidazole-co-y-vinyl-y-butyrolactone] and its catalytic activity in ester hydrolysis, Makromol.Chem. 174, 119-124 (1975).

    Google Scholar 

  18. A. Everaerts, C. Samyn, and G. Smets, IUPAC Intern.Symp. on Macromol.Chem. Florence, 1980, v.4,pp. 167-169.

    Google Scholar 

  19. P. Fedorova, l. V. Melnitchenko, l. N. Topchieva, T. I. Yakimova, and A. A. Yasnikov, Investigation of catalytic action of synthetic polyampholytes containing histamine residue and 3-aminopyridine in proton transfer reactions, Ukr.Khim.Zh. 45, 978-981 (1979).

    CAS  Google Scholar 

  20. F. Ciardelli, in: Macromolecule-Metal Complexes, edited by F. Ciardelli, E. Tsuchida, and D. Wohrle, (Springer-Verlag, Berlin,Heidelberg, 1996), pp.212-233.

    Chapter  Google Scholar 

  21. E. A. Bekturov, S. E. Kudaibergenov, and V. B. Sigitov, Abstr. 5th Intern.Symp. on Homogeneous and Heterogeneous Catalysis, Novosibirsk, 1986 p.27.

    Google Scholar 

  22. S. E. Kudaibergenov, V. B. Sigitov, and E. A. Bekturov, Complexation and catalytic activity of cationic and amphoteric polyelectrolytes with transition metal ions, Materials Ist Intern. Microsymp. on Functional Polymers, Hefei, P. R. China, 1987, p.46-49.

    Google Scholar 

  23. S. E. Kudaibergenov, V. B. Sigitov, and E. A. Bekturov, Catalytic properties of polyampholytes and thier metal complexes, Abstr 30th Intern. Microsymp. Macromol. Polymer-Supported Reagents and Catalysts, Prague, 1987, p.7.

    Google Scholar 

  24. V. S. Sharma and J. Schubert Catalytic activity of metal chelates and mixed-ligand complexes in the neutral pH region. I. Copper-imidazole, J.Am.Chem.Soc. 91, 6291-6296 (1969).

    Article  CAS  Google Scholar 

  25. V. S. Sharma and J. Schubert, Catalytic activity of metal chelates and mixed-ligand complexes in the neutral pH region. II. Copper-histidine, J.Am.Chem.Soc. 92, 822-826 (1970).

    Article  CAS  Google Scholar 

  26. E. A. Bekturov, S. E. Kudaibergenov, V. B. Sigitov, Comlexation of amphoteric copolymer of 2-methyl-5-vinylpyridine-acrylic acid with copper(II) ions and catalase-like activity of polyampholyte-metal complexes, Polymer 27, 1269-1272 (1986).

    Article  CAS  Google Scholar 

  27. V. B. Sigitov, S. E. Kudaibergenov, and E. A. Bekturov, Complexation of copper(II) with polyampholyte 2-methyl-5-vinylpyridine-acrylic acid, Koord.Khim. 13, 600-604 (1987).

    CAS  Google Scholar 

  28. V. B. Sigitov, S. E. Kudaibergenov, and E. A. Bekturov, Catalytic action of polyampholyte-metal complexes on oxidation of hydroquinone in aqueous solution, Abstr. of All-Union.Conf. on Catalytic-Reactions in Liquid Phase, Alma-Ata, 1988, p. 101.

    Google Scholar 

  29. A. Duppomier, L. Merle-Aubry, Y. Merle, and E. Selegny, Systems of synthetic polyampholytes with enzyme, Makromol.Chem. 187, 211-217 (1986).

    Article  Google Scholar 

  30. N. A. Vengerova, N. N. Lukashina, Yu. E. Kirsh, and V. A. Kabanov, Complexes of Cu(II) with polymers based on poly-4-vinylpyridine as catalysts for oxidation of ascorbic acid, Vysokomol.Soedin. Ser.A 15,773-787(1973);

    CAS  Google Scholar 

  31. V. G. Starodubtzev, Yu. E. Kirsh, and V. A. Kabanov, Solvation effects and reactivity of free pyridine residues in macromolecules of poly(4-vinylpyridine) derivatives, Eur.Polym.J. 10, 739-745 (1974).

    Article  Google Scholar 

  32. D-J. Liaw, K-R. Lee, Polymerization of vinyl monomers initiated by poly[3-dimethyl(acryloyloxyethyl)ammonium propane sulfonate] in aqueous solution, J.Macromol.Sci.-Chem. A 27(7), 875-895 (1990).

    Article  Google Scholar 

  33. D-J. Liaw, K-R. Lee, Polymerization of Vinyl Monomers Initiated by Zwitterionic Polymer in Aqueous Solution, Polymer Intern. 30, 381-386 (1993).

    Article  CAS  Google Scholar 

  34. T. Ouchi, K. Nomoto, Y. Hosaka, M. Imoto, T. Nakaya, and T. Iwamoto, Vinyl polymerization. 418.Polymerization of vinyl monomers initiated by betaine-type polymers in aqueous solution, J.Macromol.Sci.Chem. A21, 859-866 (1984).

    CAS  Google Scholar 

  35. D-J. Liaw, C-C. Huang and E-T. Kang, Characteristics and Photophysical Properties of Water-Soluble Polymers, Current Trends in Polym.Sci. 4, 117-161 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kudaibergenov, S.E. (2002). Catalysis by Polyampholytes. In: Polyampholytes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0627-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0627-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5165-8

  • Online ISBN: 978-1-4615-0627-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics