Skip to main content

Part of the book series: Fundamental Materials Research ((FMRE))

Abstract

Knowledge of the atomic-scale structure is an important prerequisite to understand and predict the physical properties of materials. In the case of crystals it is obtained from the positions and the intensities of the Bragg peaks in the diffraction data1. However, many materials of technological importance are not perfectly crystalline but contain significant disorder at the atomic scale. The diffraction patterns of such materials show only a few Bragg peaks, if any, and a pronounced diffuse component. This poses a real challenge to the usual techniques for structure characterization. The challenge can be met by employing the so-called atomic pair distribution function (PDF) technique. The atomic PDF gives the number of atoms in a spherical shell of unit thickness at a distancerfrom a reference atom. It peaks at characteristic distances separating pairs of atoms and thus describes the structure of materials. The PDF, G(r)=4πr[ρ(r)−ρ 0 ], is the sine Fourier transform of the so-called total scattering structure factorS(Q)

$$ G(r) = (2/\pi )\int\limits_{Q = 0}^{{Q_{\max }}} {Q[S(Q) - 1]\sin (Qr)dQ,} $$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.M. Woolfson, An introduction to X-ray Crystallography (Cambridge, University Press 1997); B.E. Warren, X-ray diffraction (New York, Dover, 1969).

    Book  Google Scholar 

  2. H.P. Klug and L.E. AlexanderX-ray diffraction procedures for polycrystalline materials(Wiley, New York 1974).

    Google Scholar 

  3. C.N.J WagnerJ.Non-Cryst Solids31, 1 (1978).

    Article  CAS  Google Scholar 

  4. T. EgamiMater. Trans.31, 163 (1990).

    Google Scholar 

  5. S.J.L.Billinge, R.G. DiFrancesco, G.H. Kwei, J.J. Neumeier and J.D. ThompsonPhys. Rev. Lett.77, 715 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. S.Teslic and T.EgamiActa CrystB 54, 750 (1998).

    Google Scholar 

  7. M.Tucker, M. Dove and D.A. KeenJ. Phys. Condens. Matter12, L723 (2000).

    Article  CAS  Google Scholar 

  8. J.C. Mikkelson and J.B. BoycePhys. Rev. Lett.49, 1412 (1982).

    Article  Google Scholar 

  9. L. PaulingThe Nature of the Chemical Bond(Cornell University Press, New York 1967).

    Google Scholar 

  10. V. Petkov, I-K. Jeong, J.S. Chung, M.F. Thorpe, S. Kycia and S.J.L. BillingePhys. Rev. Leu. 83, 4089 (1999);I-K. Jeong, F. Mohiuddin-Jacobs, V. Petkov, S.J.L. Billinge and S. Kycia Phys. Rev. B.63, 205202 (2001).

    Article  CAS  Google Scholar 

  11. R.W.G. WyckoffCrystal Structures((Wiley, New York 1967).

    Google Scholar 

  12. V. Petkov and S.J.L. BillingePhysicaB 305, 83 (2001).

    Article  CAS  Google Scholar 

  13. Th. Proffen and S.J.L. BillingeJ. Appl. Cryst.32, 572 (1999).

    Article  CAS  Google Scholar 

  14. W.M.R Divigalpitiya, R.F. Frindt, S.R. MorrisonScience246, 369 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. V. Petkov, S.J.L. Billinge, P. Larson, S.D. Mahanti, T. Vogt, K.K. Rangan and M.G. KanatzidisPhys. Rev. Lett.(2000), submitted (cond-mat10106303).

    Google Scholar 

  16. M. A. Py and R. HaeringCan. J. Phys.61, 76 (1983).

    Article  CAS  Google Scholar 

  17. X. Rocquefelte, F. Boucher, P. Gressier, G. Ouvrard, P. Blaha and K. SchwartzPhys. Rev B.62, 2397 (2000).

    Article  CAS  Google Scholar 

  18. V. Petkov,S.J.L. Billinge, J. Heising and M.G.KanatzidisJ. Am.Chem. Soc.122, 11571 (2000).

    Article  CAS  Google Scholar 

  19. B.O. MysenStructure and properties of silicate melts(Elsevier, Amsterdam, 1988).

    Google Scholar 

  20. V. Petkov, S.J.L. Billinge, S.D. Shastri and B. HimmelPhys. Rev. Lett.85, 3436 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. D.I. Grimley, A.C. Wright and R. N. SinclairJ. Non-Cryst Solids119, 49 (1990).

    Article  CAS  Google Scholar 

  22. J.M. CowlyDiffraction physics (Elsevier1995).

    Google Scholar 

  23. M. Bessiere, S. Lefebre and Y. CalvayracActa Cryst.B39, 145 (1983).

    CAS  Google Scholar 

  24. .Th. Proffen, V. Petkov and S.J.L. Billingein preparation.

    Google Scholar 

  25. P. Seiler and D. DunitzActa Cryst.B35, 1068 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petkov, V., Billinge, S.J.L. (2002). From Crystals to Nanocrystals: Semiconductors and Beyond. In: Billinge, S.J.L., Thorpe, M.F. (eds) From Semiconductors to Proteins: Beyond the Average Structure. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0613-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0613-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5158-0

  • Online ISBN: 978-1-4615-0613-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics