Skip to main content

Part of the book series: Microsystems ((MICT,volume 13))

Synopsis

Microelectromechanical Systems such as resonators, accelerometers, gyroscopes, IR sensors, RF filters, electrothermal converters and force sensors can be composed out of beam springs, plate masses, dampers, and electromechanical comb sensors and actuators. MEMS design involves iteratively designing each of these submodules and the entire transducer including the electronics, to meet given design specifications. System-level synthesis helps automate much of this design problem for a fixed MEMS transducer topology. First, geometric layout design variables are identified to describe the topology. Next, functional constraints that map these variables to engineering performance specifications are obtained by static and dynamic mechanical as well as electrostatic analysis. Then, the variables and constraints are used to formulate a mixed-integer non-linear optimization problem, which is solved to synthesize the transducer layout from high-level engineering specifications. A variety of objective functions can be used to automate the exploration of the entire design space given specific user-specified engineering constraints, allowing the designer to understand the complex design trade-offs inherent to the design problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. D. Senturia, “Microfabricated structures for the measurement of mechanical properties and adhesion of thin films,” Proc. 4th Int’l. Conf. Solid-State Sensors and Actuators (Transducers ‘87), pp. 11–16.

    Google Scholar 

  2. H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems,” J. Micromech. Microeng., vol. 6, no. 1, pp. 157–176, 1996.

    Article  Google Scholar 

  3. T. Mukherjee, G. K. Fedder, D. Ramaswamy and J. White, “Emerging Simulation Approaches for Micromachined Devices,” IEEE Transactions on CAD, “Special Issue: EDA at the Turn of the Century”, vol. 19, no. 12, Dec. 2000, pp. 1572–1588.

    Google Scholar 

  4. S. T. Picraux and P. J. McWhorter, “The broad sweep of integrated microsystems,” IEEE Spectrum, vol 35, no. 12, pp. 24–33, Dec. 1998.

    Article  Google Scholar 

  5. D. Ramaswamy, N. Aluru, and J. White, “Fast Coupled-Domain, Mixed-Regime Electromechanical Simulation,” Proc. 10th Int’l. Conf. on Solid-State Sensors and Actuators (Transducers ‘99), pp. 314–317.

    Google Scholar 

  6. M. Bachtold, J. G. Korvink and H. Baltes, “The Adaptive, Multipole-Accelerated BEM for the Computation of Electrostatic Forces,” Proc. CAD for MEMS, Zurich, 1997, pp. 14.

    Google Scholar 

  7. D. L. DeVoe and A. P. Pisano, “Modeling and optimal design of piezoelectric cantilever microactuators,” J. Microelectromech. Syst., vol. 6, no. 3, pp. 266–270, 1997.

    Article  Google Scholar 

  8. L. Yin and G. K. Ananthasuresh, “A novel topology design scheme for the multiphysics problems of electro-thermally actuated compliant micromechanisms,” Sens. and Act. A, 97–98, pp. 599–609.

    Google Scholar 

  9. D. Haronain, “Maximizing microelectromechanical sensor and actuator sensitivity by optimizing geometry,” Sens. and Act. A, 50 (1995), pp. 223–6.

    Article  Google Scholar 

  10. W. Ye, S. Mukherjee, and N.C. MacDonald, “Optimal Shape Design of an Electrostatic Comb Drive in Microelectromechanical Systems”, J. Microelectromech. Syst., March 1998, vol. 7, pp. 16–26.

    Article  Google Scholar 

  11. H. Li and E. L. Antonsson, “Genetic algorithms in MEMS synthesis,” Proc. 1998 ASME Intl. Mech. Eng. Cong. and Exp. (IMECE ‘98), pp. 299–303.

    Google Scholar 

  12. T.J. Hubbard and E.K. Antonsson, “Emergent faces in crystal etching,” J. Microelectromech. Syst., vol. 3, no. 1, pp. 19–28, 1994.

    Article  Google Scholar 

  13. P. M. Osterberg and S. D. Senturia, “Membuilder: An automated 3D solid-model constructionporogram for miecroelectromechanical structures,” Proc. 8th Int’l. Conf. Solid-State Sensors and Actuators (Transducers ‘95/ Eurosensors IX), Stockholm, Sweden, 25–29 Jun 1995, vol. 2, pp. 21–24.

    Google Scholar 

  14. Z. Zhu and C. Liu, “Anisotropic Crystalline Etching Simulation using a Continuous Cellular Automata Algorithm,” ASME Symposium on Computer Aided Simulation of MEMS, Anaheim, CA, Nov 1998.

    Google Scholar 

  15. G. G. E. Gielen and R. A. Rutenbar, “Computer-aided design of analog and mixed-signal integrated circuits,” Proc. of the IEEE, vol. 88, no. 12, Dec 2000, pp. 1825–1854.

    Article  Google Scholar 

  16. B. Baidya, S. K. Gupta, and T. Mukherjee, “An extraction-based verification methodology for MEMS,” J. Microelectromech. Syst., vol. 11, no. 1, Feb 2002, pp. 2–11.

    Article  Google Scholar 

  17. W. C. Tang, T.-C. H. Nguyen, M. W. Judy, and R. T. Howe, “Electrostatic Comb Drive of Lateral Polysilicon Resonators,” Sens. and Act. A, 21 (1990) 328–31.

    Article  Google Scholar 

  18. T. Mukherjee, S. Iyer, and G. K. Fedder, “Optimization-based synthesis of microresonators,” Sens. and Act. A, 70 (1998), pp 118–127.

    Article  Google Scholar 

  19. M. Lemkin and B. E. Boser, “A micromachined fully differential lateral accelerometer,” Proceedings of the IEEE 1996 Custom Integrated Circuits Conference, pp. 315–318.

    Google Scholar 

  20. Hao Luo, Gang Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” J. Microelectromech. Syst., vol. 11, no. 3, June 2002, pp. 188–195.

    Article  Google Scholar 

  21. T. Mukherjee, Y. Zhou, and G. K. Fedder, “Automated Optimal Synthesis of Microaccelerometers,” Tech. Dig. of Twelfth IEEE Intl. Conf. on Micro Electro Mechanical Systems (MEMS 99), Orlando FL, Jan. 17–21 1999, pp. 326–331.

    Google Scholar 

  22. V. Gupta and T. Mukherjee, “Layout Synthesis of CMOS-MEMS Accelerometers,” Tech. Proc. of Third Intl. Conf. on Modeling and Simulation of Microsystems (MSM 2000), San Diego, CA, March 27–29, 2000, pp. 150–153.

    Google Scholar 

  23. D. A. Koester, R. Mahadevan, K. W. Markus, Multi-User MEMS Processes (MUMPs) Introduction and Design Rules, Cronos MEMS Business Unit, 3026 Cornwallis Road, Research Triangle Park, NC 27709.

    Google Scholar 

  24. S. Iyer, T. Mukherjee and G.K. Fedder, “Multi-Mode Sensitive Layout Synthesis of Microresonators,” First Intl. Conf. on Modeling and Simulation of Microsystems, (MSM 98), Santa Clara CA, April 6–8, 1998.

    Google Scholar 

  25. P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, User’s Guide for NPSOL (Version 4.0): A Fortran Package for Nonlinear Programming, Technical Report SOL 86–2, Stanford University, January 1986.

    Google Scholar 

  26. A. Ongkodjojo, and F. E. H. Tay, “Global optimization and design for microelectromechanical systems devices based on simulated annealing,” J. Micromech. Microeng., vol. 12, no. 6, Nov. 2002, pp. 878–897

    Article  Google Scholar 

  27. CaMEL Web Page, http://www.memsrus.org/svcscml.html, Cronos MEMS Business Unit, 3026 Cornwallis Road, Research Triangle Park, NC 27709.

    Google Scholar 

  28. T. Mukherjee, “CAD for Integrated MEMS Design,” Proc. Design, Test Integration, and Packaging of MEMS/MOEMS (DTIP 2000), Paris, France, May 9–11, 2000, pp. 3–14, (invited).

    Google Scholar 

  29. G. K. Fedder, Simulation of Microelectromechanical Systems, Ph.D. thesis, University of California at Berkeley, September 1994.

    Google Scholar 

  30. J. M. Gere and S. P. Timoshenko, Mechanics of Materials, 4th ed., Boston: PWS Publishing Co., 1997.

    Google Scholar 

  31. X. Zhang and W. C. Tang, “Viscous Air Damping in Laterally Driven Microresonators,” Sensors and Materials, v. 7, no. 6, 1995, pp.415–430.

    Google Scholar 

  32. W. A. Johnson and L. K. Warne, “Electrophysics of Micromechanical Comb Actuators,” J. Microelectromech. Syst., v.4, no.1, Mar 1995, pp. 49–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mukherjee, T., Fedder, G.K. (2003). System-Level Synthesis. In: Optimal Synthesis Methods for MEMS. Microsystems, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0487-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0487-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5101-6

  • Online ISBN: 978-1-4615-0487-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics