Skip to main content

Genetics of Proteolysis in Lactococcus lactis

  • Chapter
Book cover Genetics of Lactic Acid Bacteria

Part of the book series: The Lactic Acid Bacteria ((LAAB,volume 3))

Abstract

Genetic and biochemical research over the past 15 years on milk protein degradation by Lactococcus lactis has resulted in a detailed picture of how casein is broken down into its sub-fragments and used for cellular growth. Starting with the action of an extracellular but cell-wall-located proteinase, milk protein is degraded into oligopeptides that are internalized by a specialized and essential oligopeptide permease (Opp) system. Without Opp, cells of Lc. lactis cannot grow in milk. Notwithstanding this, the organism has two uptake systems for the internalization of di- and tripeptides. Once inside, a host of intracellular peptidases degrade the oligopeptides into smaller peptides and amino acids that are needed for cell growth. Both general aminopeptidases and more specialized enzymes are involved in this degradation process, as are a number of oligopeptidases. Most of the genes of the components making up the casein degradation pathway have been cloned and sequenced and most of these have been targeted by insertional mutagenesis to allow for an analysis of the function and importance of the components in the pathway. The casein degradation route has been engineered in various ways by the overexpression or stabilization of certain genes, by deleting genes, by mutating enzyme specificities or by expressing heterologous proteolytic enzymes in Lc. lactis. In a number of cases, the modified strains have been used in (small-scale) cheese trials to assess the effects of the changes on the organoleptic quality of the fermentation product. More recently the regulation of the various genes in response to the growth phase of the cells and to medium composition has been studied. Even more recent is the discovery, through the determination of the nucleotide sequence of the chromosome of a widely studied laboratory strain of Lc. lactis, of a number of additional proteinase genes not yet described in this organism. It is no exaggeration to claim that the caseinolytic pathway of Lc. lactis is the best studied of the protein degradation pathways of micro-organisms. This chapter deals with the unravelling of the intricacies of this industrially important catabolic route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnau, J., Hjerl-Hansen, E., and Israelsen, H. (1997). Heterologous gene expression of bovine plasmin in Lactococcus lactis. Applied Microbiology and Biotechnology 48: 331–338.

    Article  CAS  Google Scholar 

  • Arnau, J., Sørensen, K. I., Appel, K. F., Vogensen, F. K., and Hammer, K. (1996). Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology 142: 1685–1691.

    Article  CAS  Google Scholar 

  • Baankreis, R. (1992). The role of lactococcal peptidases in cheese ripening. Ph.D. thesis. University of Amsterdam, The Netherlands.

    Google Scholar 

  • Baankreis, R., and Exterkate, F. A. (1991). Characterization of a peptidase from Lactococcus lactis ssp. cremoris HP that hydrolyses di- and tripeptides containing proline or hydrophobic residues as the aminoterminal amino acid. Systematic and Applied Microbiology 14: 317–323.

    Article  CAS  Google Scholar 

  • Bacon, C. L., Jennings, P. V., Fhaoláin, I. N., and O’Cuinn, G. (1994). Purification and characterization of an aminopeptidase A from cytoplasm of Lactococcus lactis subsp. cremoris AM2. International Dairy Journal 4:503–519.

    Article  CAS  Google Scholar 

  • Bacon, C. L., Wilkinson, M., Jennings, P. V., Fhaoláin, I. N., and O’Cuinn, G. (1993). Purification and characterization of an aminotripeptidase from cytoplasm of Lactococcus lactis subsp. cremoris AM2. International Dairy Journal 3: 163–177.

    Article  CAS  Google Scholar 

  • Bie, R., and Sjöström, G. (1975a). Autolytic properties of some lactic acid bacteria used in cheese production. Part I: Material and methods. Milchwissenschaft 30: 653–657.

    Google Scholar 

  • Bie, R., and Sjöström, G. (1975b). Autolytic properties of some lactic acid bacteria used in cheese production. Part II: Experiments with fluid substrates and cheese. Milchwissenschaft 30: 739–747.

    Google Scholar 

  • Bockelmann, W., Monnet, V., Geis, A., Teuber, M., and Gripon, J.-C. (1989). Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. Applied Microbiology and Biotechnology 31: 278–282.

    Article  CAS  Google Scholar 

  • Bolotin, A., Mauger, S., Malarme, K., Ehrlich, S.D., and Sorokin, A. (1999). Low-redundancy sequencing of the entire Lactococcus lactis IL 1403 genome. Antonie van Leeuwenhoek 76: 27–76.

    Article  CAS  Google Scholar 

  • Booth, M., Fhaoláin, I. N., Jennings, P. V, and O’Cuinn, G. (1990a). Purification and characterization of a post-proline dipeptidyl aminopeptidase from Streptococcus cremoris AM2. Journal of Dairy Research 57: 89–99.

    Article  Google Scholar 

  • Booth, M., Jennings, V., Fhaoláin, I. N., and O’Cuinn, G. (1990b). Prolidase activity of Lactococcus lactis subsp. cremoris AM2: partial purification and characterization. Journal of Dairy Research 57: 245–254.

    Article  Google Scholar 

  • Bosman, B. W., Tan, P. S. T., and Konings, W. N. (1990). Purification and characterization of a tripeptidase from Lactococcus lactis subsp. cremoris Wg2. Applied and Environmental Microbiology 56: 1839–1843.

    CAS  Google Scholar 

  • Bruinenberg, P. G., de Vos, W. M., and Siezen, R. J. (1994). Prevention of C-terminal autoprocessing of Lactococcus lactis SK11 cell-envelope proteinase by engineering of an essential surface loop. Biochemical Journal 302: 957–963.

    CAS  Google Scholar 

  • Bruinenberg, P. G., Vos, P., and de Vos, W. M. (1992). Proteinase overproduction in Lactococcus lactis strains: regulation and effect on growth and acidification in milk. Applied and Environmental Microbiology 58: 78–84.

    CAS  Google Scholar 

  • Buist, G., Kok, J., Leenhouts, K. J., Drabowska, M., Venema, G., and Haandrikman, A. J. (1995). Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. Journal of Bacteriology 177: 1554–1563.

    CAS  Google Scholar 

  • Buist, G., Benus, G., Haandrikman, A., Venema, G., and Kok, J. (1999). Pyrrolidone carboxyl peptidase of Lactococcus lactis MG1363. Sixth Symposium on Lactic Acid Bacteria, Book of abstracts, K32.

    Google Scholar 

  • Buist, G., Venema, G., and Kok, J. (1998). Autolysis of Lactococcus lactis is influenced by proteolysis. Journal of Bacteriology 180: 5947–5953.

    CAS  Google Scholar 

  • Bukau, B. (1993). Regulation of the Escherichia coli heat-shock response. Molecular Microbiology 9: 671–680.

    Article  CAS  Google Scholar 

  • Chapot-Chartier, M.-P., Deniel, C., Rousseau, M., Vassal, L., and Gripon, J.-C. (1994a). Autolysis of two strains of Lactococcus lactis during cheese ripening. International Dairy Journal 4: 251–269.

    Article  Google Scholar 

  • Chapot-Chartier, M.-P., Nardi, M., Chopin, M.-C., Chopin, A., and Gripon, J.-C. (1993). Cloning and sequencing of pepC, a cysteine aminopeptidase gene from Lactococcus lactis subsp. cremoris AM2. Applied and Environmental Microbiology 59: 330–333.

    CAS  Google Scholar 

  • Chapot-Chartier, M.-P., Rul, F., Nardi, M., and Gripon, J.-C. (1994b). Gene cloning and characterization of PepC, a cysteine aminopeptidase from Streptococcus thermophilus, with sequence similarity to the eukaryotic bleomycin hydrolase. European Journal of Biochemistry 224: 497–506.

    Article  Google Scholar 

  • Christensen, J. E., Lin, D.-L., Palva, A., and Steele, J. L. (1995a). Sequence analysis, distribution and expression of an aminopeptidase N-encoding gene from Lactobacillus helveticus CNRZ32. Gene 155: 89–93.

    Article  Google Scholar 

  • Christensen, J. E., Johnson, M. E., and Steele, J. L. (1995b). Production of cheddar cheese using a Lactococcus lactis ssp. cremoris SK11 derivative with enhanced aminopeptidase activity. International Dairy Journal 5: 367–379.

    Article  Google Scholar 

  • Christensen, J. E., Dudley, E. G., Pederson, J. A., and Steele, J. (1999). Peptidases and amino acids catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76: 217–246.

    Article  CAS  Google Scholar 

  • Chopin, A. (1993). Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiological Reviews 12:21–38.

    Article  CAS  Google Scholar 

  • Coward, C., Le Page, R. W. F., and Wells, J. M. (1995). Lon and Clp-like ATP-dependent proteases of Lactococcus lactis, pp. 481–486. In: J. J. Ferretti, M. S. Gilmore, T. R. Klaenhammer, and F. Brown (Eds.), Genetics of Streptococci, Enterococci and Lactococci. Developments in biological standardization. Basel: Karger.

    Google Scholar 

  • Crow, V L., Coolbear, T., Gopal, P. K., Martley, F. G., Mckay, L. L., and Riepe, H. (1995). The role of autolysis of lactic acid bacteria in the ripening of cheese. International Dairy Journal 5: 855–875.

    Article  CAS  Google Scholar 

  • De Ruyter, P. G. G. A., Kuipers, O. P., and de Vos, W. M. (1996). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Applied and Environmental Microbiology 62: 3662–3667.

    Google Scholar 

  • De Ruyter, P. G. G. A., Kuipers, O. P., Meijer, W. C., and de Vos, W. M. (1997). Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nature Biotechnology 15: 976–979.

    Article  Google Scholar 

  • Detmers, F. J. M., Kunji, E. R. S., Lanfermeijer, F. C., Poolman, B., and Konings, W. N. (1998). Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 37: 16671–16679.

    Article  CAS  Google Scholar 

  • Deutscher, J., Küster, E., Bergstedt, U., Charrier, V., and Hillen, W. (1995). Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Molecular Microbiology 15: 1049–1053.

    Article  CAS  Google Scholar 

  • de Vos, W. M., Boerigter, I., Vos, P., Bruinenberg, P., and Siezen, R. J. (1991). Production, processing, and engineering of the Lactococcus lactis SK11 proteinase. In: G. M. Dunny, P. P. Geary, and L. L. McKay (Eds.), Genetics and molecular biology of Streptococci, Lactococci and Enterococci (pp. 115–119). Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Dickely, R., Nilsson, D., Hansen, E. B., and Johansen, E. (1995). Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Molecular Microbiology 15: 839–847.

    Article  CAS  Google Scholar 

  • Erra-Pujada, M., Mistou, M. Y., and Gripon, J.-C. (1995). Construction et étude d’une souche de Lactococcus lactis don’t le gène pepC n’est plus fonctionnel. 7ème Colloque du Club des Bactéries Lactiques, poster p. 8.

    Google Scholar 

  • Exterkate, F. A. (1995). The lactococcal cell envelope proteinases: differences, calcium-binding effects and role in cheese ripening. International Dairy Journal 5: 995–1018.

    Article  CAS  Google Scholar 

  • Exterkate, F. A. (1985). A dual directed control of cell wall proteinase production in S. cremoris AMI: A possible mechanism of regulation during growth in milk. Journal of Dairy Science 68: 562–571.

    Article  CAS  Google Scholar 

  • Exterkate, F. A. (1977). Pyrrolidone carboxylyl peptidase in Streptococcus cremoris: Dependence on an interaction with membrane components. Journal of Bacteriology 129: 1281–1288.

    CAS  Google Scholar 

  • Exterkate, F. A., and Alting, A. C. (1999). Role of calcium in activity and stability of the Lactococcus lactis cell envelope proteinase. Applied and Environmental Microbiology 65: 1390–1396.

    CAS  Google Scholar 

  • Exterkate, F. A., and Alting, A. C. (1995). The role of starter peptidases in the initial proteolytic events leading to amino acids in Gouda cheese. International Journal of Dairy Science 5: 15–28.

    Article  CAS  Google Scholar 

  • Exterkate, F. A., Alting, A. C., and Bruinenberg, P. G. (1993). Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Applied and Environmental Microbiology 59: 3640–3647.

    CAS  Google Scholar 

  • Exterkate, F. A., and De Veer, G. J. C. M. (1987). Purification and some properties of a membrane-bound aminopeptidase A from Streptococcus cremoris. Applied and Environmental Microbiology 53: 577–583.

    CAS  Google Scholar 

  • Fang, G., Konings, W. N., and Poolman, B. (2000). Kinetics and substrate specificity of membrane-reconstituted peptide transporter DtpT of Lactococcus lactis. Journal of Bacteriology 182: 2530–2535.

    Article  CAS  Google Scholar 

  • Foucaud, C., Kunji, E. R. S., Hagting, A., Richard, J., Konings, W. N., Desmazeaud, M., and Poolman, B. (1995). Specificity of peptide transport systems in Lactococcus lactis: evidence for a third system which transports hydrophobic di- and tripeptides. Journal of Bacteriology 111: 4652–4657.

    Google Scholar 

  • Franke, C. M., Tiemersma, J., Venema, G., and Kok, J. (1999). Membrane topology of the lactococcal bacteriocin ATP-binding cassette transporter protein LcnC. Involvement of LcnC in lactococcin a maturation. Journal of Biological Chemistry 214: 8484–8490.

    Article  Google Scholar 

  • Frees, D., and Ingmer, H. (1999). Clp participates in the degradation of misfolded protein in Lactococcus lactis. Molecular Microbiology 31: 79–87.

    Article  CAS  Google Scholar 

  • Gasson, M. J. (1990). In vivo genetic systems in lactic acid bacteria. FEMS Microbiological Reviews 87: 43–60.

    CAS  Google Scholar 

  • Godon, J.-J., Delorme, C., Ehrlich, S. D., and Renault, P. (1992). Divergence of genomic sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology 58: 4045–4047.

    CAS  Google Scholar 

  • Gross, C. A. (1996). Function and regulation of the heat shock proteins. In: F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (Eds.), Escherichia coli and Salmonella: cellular and molecular biology (pp. 1382–1399 2nd ed.). Washington, DC: ASM Press.

    Google Scholar 

  • Guédon, E., Renault, P., Ehrlich, S. D., and Delorme, C. (1999). Environmental and genetic factors affecting the expression of peptidase genes in lactococci. Sixth Symposium on Lactic Acid Bacteria, Book of abstracts, K34.

    Google Scholar 

  • Haandrikman, A. J., Kok, J., Laan, H., Soemitro, S., Ledeboer, A. M., Konings, W. N., and Venema, G. (1989). Identification of a gene required for maturation of an extracellular lactococcal proteinase. Journal of Bacteriology 171: 2789–2794.

    CAS  Google Scholar 

  • Haandrikman, A. J., Kok, J., and Venema, G. (1991). Lactococcal proteinase maturation protein PrtM is a lipoprotein. Journal of Bacteriology 173: 4517–4525.

    CAS  Google Scholar 

  • Hagting, A., Kunji, E. R. S., Leenhouts, K. J., Poolman, B., and Konings, W. N. (1994). The di- and tripeptide transport protein of Lactococcus lactis. Journal of Biological Chemistry 269: 11391–11399.

    CAS  Google Scholar 

  • Hansen, P. A. (1941). A study in cheese ripening. The influence of autolysed cells of Streptococcus cremoris and Streptococcus lactis on the development of Lactobacillus casei. Journal of Dairy Science 24: 969–976.

    Article  Google Scholar 

  • Havarstein, L. S., Diep, D. B., and Nes, I. F. (1995). A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Molecular Microbiology 16: 229–240.

    Article  CAS  Google Scholar 

  • Hellendoorn, M., De Jong, A., Buist, G., Venema, G., and Kok, J. (1999). Regulation of components of the proteolytic system. Sixth Symposium on Lactic Acid Bacteria, Book of abstracts, K33.

    Google Scholar 

  • Hellendoorn, M. A., Franke-Fayard, B. M. D., Mierau, I., Venema, G., and Kok, J. (1997). Cloning and analysis of the pepV dipeptidase gene of Lactococcus lactis MG1363. Journal of Bacteriology. 179: 3410–3415.

    CAS  Google Scholar 

  • Higgins, C. F. (1992). ABC transporters: from microorganisms to man. Annual Review of Cell and Developmental Biology 8: 67–113.

    Article  CAS  Google Scholar 

  • Holt, C., and Sawyer, L. (1988). Primary and predicted secondary structures of the caseins in relation to their biological function. Protein Engineer 2: 251–259.

    Article  CAS  Google Scholar 

  • Huang, D. C., Huang, X. F., Novel, G., and Novel, M. (1993). Two genes present on a transposon-like structure in Lactococcus lactis are involved in a Clp-family proteolytic activity. Molecular Microbiology 7: 957–965.

    Article  CAS  Google Scholar 

  • Hueck, C. J., and Hillen, W. (1995). Catabolite repression in Bacillus subtilis: A global regulatory mechanism for the Gram-positive bacteria? Molecular Microbiology 15: 395–401.

    Article  CAS  Google Scholar 

  • Hwang, I.-K., Kaminogawa, S., and Yamauchi, K. (1981). Purification and properties of a dipeptidase from Streptococcus cremoris. Agricultural and Biological Chemistry 45: 159–165.

    Article  CAS  Google Scholar 

  • Hwang, I.-K., Kaminogawa, S., and Yamauchi, K. (1982). Kinetic properties of a dipeptidase from Streptococcus cremoris. Agricultural and Biological Chemistry 46: 3049–3053.

    Article  CAS  Google Scholar 

  • Ingmer, H., Vbgensen, F. K., Hammer, K., and Kilstrup, M. (1999). Disruption and analysis of the clpB, clpC and clpE genes in Lactococcus lactis: ClpE, a new Clp family in Gram-Positive bacteria. Journal of Bacteriology 181:2075–2083.

    CAS  Google Scholar 

  • Jacobs, M., Andersen, J. B., Kontinen, V., and Sarvas, M. (1993). Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with of without prose-quences. Molecular Microbiology 8: 957–966.

    Article  CAS  Google Scholar 

  • Juillard, V., Laan, H., Kunji, E. R. S., Jeronimus-Stratingh, C. M., Bruins, A. P., and Konings, W. N. (1995a). The extracellular Pi-type proteinase of Lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides. Journal of Bacteriology 177: 3472–3478.

    Google Scholar 

  • Juillard, V., Le Bars, D., Kunji, E. R. S., Konings, W. N., Gripon, J.-C., and Richard, J. (1995b). Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Applied and Environmental Microbiology 61: 3024–3030.

    Google Scholar 

  • Kahala, M., and Palva, A. (1999). The expression signals of the Lactococcus brevis sipA gene direct efficient heterologous protein production in lactic acid bacteria. Applied Microbiology and Biotechnology 51: 71–78.

    Article  CAS  Google Scholar 

  • Kaminogawa, S., Azuma, N., Hwang, I. K., Suzuki, Y., and Yamauchi, K. (1984). Isolation and characterization of a prolidase from Streptococcus cremoris H61. Agricultural and Biological Chemistry 48: 3035–3040.

    Article  CAS  Google Scholar 

  • Katayama, Y., Gottesman, S., Pumphrey, J., Rudikoff, S., Clark, W. P., and Maurizi, M. R. (1988). The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning and mutational analysis of the ATP binding component. Journal of Biological Chemistry 263: 15226–15236.

    CAS  Google Scholar 

  • Kilstrup, M., Jacobsen, S., Hammer, K., and Vbgensen, F. K. (1997). Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Applied and Environmental Microbiology 63: 1826–1837.

    CAS  Google Scholar 

  • Kiefer-Partsch, B., Bockelmann, W., Geis, A., and Teuber, M. (1989). Purification of an X-prolyl-dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subsp. cremoris. Applied Microbiology and Biotechnology 31: 75–78.

    Article  CAS  Google Scholar 

  • Kim, K. I., Park, S. C., Kang, S. H., Cheong, G. W., and Chung, C. H. (1999). Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. Journal of Molecular Biology 294: 1363–1374.

    Article  CAS  Google Scholar 

  • Kiwaki, M., Ikemura, H., Shimizu-Kadota, M., and Hirashima, A. (1989). Molecular characterization of a cell wall associated proteinase gene of Streptococcus lactis NCD0763. Molecular Microbiology 3: 359–369.

    Article  CAS  Google Scholar 

  • Koch, B., Kilstrup, M., Vogensen, F. K., and Hammer, K. (1998). Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. Journal of Bacteriology 180: 3873–3881.

    CAS  Google Scholar 

  • Kok, J. (1990). Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiological Reviews 87: 15–41.

    Article  CAS  Google Scholar 

  • Kok, J., and de Vos, W. M. (1994). The proteolytic system of lactic acid bacteria. In: M. Gasson and W. De Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 169–210). London, England: Blackie and Professional.

    Chapter  Google Scholar 

  • Kok, J., Leenhouts, K. J., Haandrikman, A. J., Ledeboer, A. M., and Venema, G. (1988). Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2. Applied and Environmental Microbiology 54: 231–238.

    CAS  Google Scholar 

  • Kok, J., Van Dijl, J. M., van der Vossen, J. M. B. M., and Venema, G. (1985). Cloning and expression of a Streptococcus cremoris proteinase gene in Bacillus subtilis and Streptococcus lactis. Applied and Environmental Microbiology 50: 94–101.

    CAS  Google Scholar 

  • Kok, J., and Venema, G. (1988). Genetics of proteinases in lactic acid bacteria. Biochimie 70: 475–488.

    Article  CAS  Google Scholar 

  • Konings, W. N., Poolman, B., and Driessen, A. J. M. (1989). Bioenergetics and solute transport in lactococci. CRC Critical Reviews in Microbiology 16: 419–476.

    Article  CAS  Google Scholar 

  • Kuipers, O. P., De Jong, A., Holsappel, S., Bron, S., Kok, J., and Hamoen, L. W. (1999). DNA-micro-arrays and food-biotechnology. Antonie van Leeuwenhoek 76: 353–355.

    Article  CAS  Google Scholar 

  • Kuipers, O. P., De Ruyter, P. G. G. A., Kleerebezem, M., and De Vos, W. M. (1997). Controlled overproduction of proteins by lactic acid bacteria. Trends in Biotechnology 15: 135–140.

    Article  CAS  Google Scholar 

  • Kunji, E. R. S., Hagting, A., De Vries, C. J., Juillard, V., Haandrikman, A. J., Poolman, B., and Konings, W. N. (1995). Transport of ß-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. Journal of Biological Chemistry 270: 1569–1574.

    Article  CAS  Google Scholar 

  • Kunji, E. R. S., Mierau, I., Hagting, A., Poolman, B., and Konings, W. N. (1996a). The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187–221.

    Article  Google Scholar 

  • Kunji, E. R. S., Mierau, I., Poolman, B., Konings, W. N., Venema, G., and Kok, J. (1996b). The fate of peptides in peptidase mutants of Lactococcus lactis. Molecular Microbiology 21:123–131.

    Article  Google Scholar 

  • Kunji, E. R. S., Smid, E. J., Plapp, R., Poolman, B., and Konings, W. N. (1993). Di-, tripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. Journal of Bacteriology 175: 2052–2059.

    CAS  Google Scholar 

  • Laan, H., Bolhuis, H., Poolman, B., Abee, T, and Konings, W. N. (1993). Regulation of proteinase synthesis in Lactococcus lactis. Acta Biotechnology 13: 95–101.

    Article  Google Scholar 

  • Laan, H., Haverkort, R. E., De Leij, L., and Konings, W. N. (1996). Detection and localisation of lactococcal peptidases with monoclonal antibodies. Journal of Dairy Research 63: 245–256.

    Article  CAS  Google Scholar 

  • Lanfermeijer, F.C., Picon, A., Konings, W. N., and Poolman, B. (1999). Kinetics and consequences of binding of nona- and dodecapeptides to the oligopeptide binding protein (OppA) of Lactococcus lactis. Biochemistry 38; 14440–14450.

    Article  CAS  Google Scholar 

  • l’Anson, K. J., Movahedi, S., Griffin, H. G., Gasson, M. J., and Mulholland, F. (1995). A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiology 141: 2873–2881.

    Article  Google Scholar 

  • Law, J., Fitzgerald, G. R., Uniacke-Lowe, T., Daly, C., and Fox, P. F. (1993). The contribution of lactococcal starter proteinases to proteolysis in Cheddar cheese. Journal of Dairy Science 76: 2455–2467.

    Article  CAS  Google Scholar 

  • Law, B. A., Sharpe, M. E., and Reiter, B. (1974). The release of intracellular dipeptidase from starter streptococci during Cheddar cheese ripening. Journal of Dairy Research 41: 137–146.

    Article  CAS  Google Scholar 

  • Law, J., Vos, P., Hayes, F., Daly, C., de Vos, W. M., and Fitzgerald, G. F. (1992). Cloning and partial sequencing of the proteinase gene complex from Lactococcus lactis subsp. lactis UC317. Journal of General Microbiology 138: 1–10.

    Article  Google Scholar 

  • Leenhouts, K., Bolhuis, A., Boot, J., Deutz, I., Toonen, M., Venema, G., Kok, J., and Ledeboer, A. (1998). Cloning, expression, and chromosomal stabilization of the Propionibacterium shermanii proline iminopep-tidase gene (pip) for food-grade application in Lactococcus lactis. Applied and Environmental Microbiology 64: 4736–4742.

    CAS  Google Scholar 

  • Leenhouts, K. J., Buist, G., Bolhuis, A., Ten Berge, A., Kiel, J., Mierau, I., Dabrowska, M., Venema, G., and Kok, J. (1996). A general system for generating unlabelled gene replacements in the bacterial chromosome. Molecular & General Genetics 253: 217–224.

    Article  CAS  Google Scholar 

  • Leenhouts, K., Gietema, J., Kok, J., and Venema, G. (1991). Chromosomal stabilization of the proteinase genes in Lactococcus lactis. Applied and Environmental Microbiology 57: 2568–2575.

    CAS  Google Scholar 

  • Lloyd, R. J., and Pritchard, G. G. (1991). Characterization of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis ssp. lactis H1. Journal of General Microbiology 137: 49–56.

    Article  CAS  Google Scholar 

  • Luesink, E. J., Van Herpen, R. E. M. A., Grossiord, B. P., Kuipers, O. P., and de Vos, W. M. (1998). Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Molecular Microbiology 30: 789–798.

    Article  CAS  Google Scholar 

  • Mars, I., and Monnet, V. (1995). An aminopeptidase P from Lactococcus lactis with original specificity. Biochimica et Biophysica Acta 1243: 209–215.

    Article  Google Scholar 

  • Marugg, J. D., Meijer, W. C., Van Kranenburg, R., Laverman, P., Bruinenberg, P. G., and de Vos, W. M. (1995). Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: control of transcription initiation by specific dipeptides. Journal of Bacteriology 111: 2982–2989.

    Google Scholar 

  • Marugg, J. D., Van Kranenburg, R., Laverman, P., Rutten, G. A. M., and de Vos, W. M. (1996). Identical transcriptional control of the divergently transcribed prtP and prtM genes that are required for proteinase production in Lactococcus lactis SK11. Journal of Bacteriology 178: 1525–1531.

    CAS  Google Scholar 

  • Mata, L., Erra-Pujada, M., Gripon, J.-C., and Mistou, M.-Y. (1997). Experimental evidence for the essential role of the C-terminal residue in the strict aminopeptidase activity of the thiol aminopeptidase PepC, a bacterial bleomycin hydrolase. Biochemical Journal 328: 343–347.

    CAS  Google Scholar 

  • Mata, L., Gripon, J.-C., and Mistou, M.-Y. (1999). Deletion of the four C-terminal residues of PepC converts an aminopeptidase into an oligopeptidase. Protein Engineering 12: 681–686.

    Article  CAS  Google Scholar 

  • Matos, J., Nardi, M., Kumura, H., and Monnet, V (1998). Genetic characterization of pepP, which encodes an aminopeptidase P whose deficiency does not affect Lactococcus lactis growth in milk, unlike deficiency of the X-prolyl dipeptidyl aminopeptidase. Applied and Environmental Microbiology 64: 4591–4595.

    CAS  Google Scholar 

  • Maurizi, M. R., Clark, W., Kim, S. H., and Gottesman, S. (1990). ClpP represents a unique family of serine proteases. Journal of Biological Chemistry 265: 12546–12552.

    CAS  Google Scholar 

  • Mayhew, M., and Haiti, F.-U. (1996). Molecular chaperone proteins. In: F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (Eds.), Escherichia coli and Salmonella: cellular and molecular biology (pp. 922–937, 2nd ed.). Washington, DC: ASM Press.

    Google Scholar 

  • Mayo, B., Kok, J., Bockelmann, W., Haandrikman, A., Leenhouts, K. J., and Venema, G. (1993). The effect of X-prolyl dipeptidyl aminopeptidase deficiency in Lactococcus lactis. Applied and Environmental Microbiology 59: 2049–2055.

    CAS  Google Scholar 

  • Mayo, B., Kok, J., Venema, K., Bockelmann, W., Teuber, M., Reinke, H., and Venema, G. (1991). Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology 51: 38–44.

    Google Scholar 

  • McGarry, A., Law, J., Coffey, A., Daly, C., Fox, P. F., and Fitzgerald, G. F. (1994). Effect of genetically modifying the lactococcal proteolytic system on ripening and flavor development in Cheddar cheese. Applied and Environmental Microbiology 60: 4226–4233.

    CAS  Google Scholar 

  • McKay, L. L. (1983). Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49: 259–274.

    Article  CAS  Google Scholar 

  • Meijer, W. C., Marugg, J. D., and Hugenholtz, J. (1996). Regulation of proteolytic enzyme activity in Lactococcus lactis. Applied and Environmental Microbiology 62: 156–161.

    CAS  Google Scholar 

  • Mierau, I., Haandrikman, A. J., Velterop, O., Tan, P. S. T., Leenhouts, K. L., Konings, W. N., Venema, G., and Kok, J. (1994). Tripeptidase gene (pept) of Lactococcus lactis: molecular cloning and nucleotide sequencing of pepT and construction of a chromosomal deletion mutant. Journal of Bacteriology 176: 2854–2861.

    CAS  Google Scholar 

  • Mierau, I., Kunji, E. R. S., Leenhouts, K. J., Hellendoorn, M. A., Haandrikman, A. J., Poolman, B., Konings, W. N., Venema, G., and Kok, J. (1996). Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. Journal of Bacteriology 178: 2794–2803.

    CAS  Google Scholar 

  • Mierau, I., Tan, P. S. T., Haandrikman, A. J., Kok, J., Leenhouts, K. J., Konings, W. N., and Venema, G. (1993). Cloning and sequencing of the gene for a lactococcal endopeptidase, an enzyme with sequence similarity to mammalian enkephalinase. Journal of Bacteriology 175: 2087–2096.

    CAS  Google Scholar 

  • Mistou, M.-Y., and Gripon, J.-C (1998). Catalytic properties of the cysteine aminopeptidase PepC, a bacterial bleomycin hydrolase. Biochimica et Biophysica Acta 3: 63–70.

    Article  Google Scholar 

  • Mistou, M.-Y., Rigolet, P., Chapot-Chartier, M.-P., Nardi, M., Gripon, J.-C., and Brunie, S. (1994). Crystallization and preliminary X-ray analysis of PepC, a thiol aminopeptidase from Lactococcus lactis homologous to bleomycin hydrolase. Journal of Molecular Biology 237: 160–162.

    Article  CAS  Google Scholar 

  • Monedero, V., Gosalbes, M. J., and Perez-Martinez, G. (1997). Catabolite repression in Lactobacillus casei AICC 393 is mediated by CcpA. Journal of Bacteriology 179: 6657–6664.

    CAS  Google Scholar 

  • Monnet, V., Bockelmann, W., Gripon, J.-C., and Teuber, M. (1989). Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. Applied Microbiology and Biotechnology 31: 112–118.

    Article  CAS  Google Scholar 

  • Monnet, V., Le Bars, D., and Gripon, J.-C. (1986). Specificity of a cell wall proteinase from Streptococcus lactis NCDO 763 towards bovine ß-casein. FEMS Microbiological Letters 36: 127–131.

    CAS  Google Scholar 

  • Monnet, V., Ley, J. P., and Gonzalez, S. (1992). Substrate specificity of the cell envelope-located proteinase of Lactococcus lactis subsp. lactis NCDO 763. International Journal of Biochemistry 24: 707–718.

    Article  CAS  Google Scholar 

  • Monnet, V., Nardi, M., Chopin, A., Chopin, M.-C., and Gripon, J.-C. (1994). Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. Journal of Biological Chemistry 269: 32070–32076.

    CAS  Google Scholar 

  • Nardi, M., Chopin, M.-C., Chopin, A., CALS, M.-M., and Gripon, J.-C. (1991). Cloning and DNA sequence analysis of an X-prolyl dipeptidyl peptidase gene from Lactococcus lactis subsp. lactis NCDO 763. Applied and Environmental Microbiology 57: 45–50.

    CAS  Google Scholar 

  • Nardi, M., Renault, P., and Monnet, V. (1997). Duplication of the pepF gene and shuffling DNA fragments on the lactose plasmid of Lactococcus lactis. Journal of Bacteriology 13: 4164–4171.

    Google Scholar 

  • Nath, K. R. (1992). Cheese. In: Dairy science and technology handbook (pp. 161–255). New York: VCH Publishers, Inc.

    Google Scholar 

  • Navarre, W. W., and Schneewind, O. (1994). Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Molecular Microbiology 14: 115–121.

    Article  CAS  Google Scholar 

  • Nauta, A., Van Den Burg, B., Karsens, H., Venema, G., and Kok, J. (1997). Design of thermolabile bacteriophage repressor mutants by comparative molecular modelling. Nature Biotechnology 15: 980–983.

    Article  CAS  Google Scholar 

  • Neviani, E., Boquien, C. Y., Monnet, V., Phan Thanh, L., and Gripon, J.-C. (1989). Purification and characterization of an aminopeptidase from Lactococcus lactis ssp. cremoris AM2. Applied and Environmental Microbiology 55: 2308–2314.

    CAS  Google Scholar 

  • Nissen-Meyer, J., Lillehaug, D., and Nes, I. F. (1992). The plasmid-encoded lactococcal envelope-associated proteinase is encoded by a chromosomal gene in Lactococcus lactis subsp. cremoris BC101. Applied and Environmental Microbiology 58: 750–753.

    CAS  Google Scholar 

  • Niven, G. W. (1991). Purification and properties of aminopeptidase A from Lactococcus lactis subsp. lactis NCDO 712. Journal of General Microbiology 137: 1207–1212.

    Article  CAS  Google Scholar 

  • Odagaki, Y., Hayashi, A., Okada, K., Hirotsu, K., Kabashima, T., Ito, K., Yoshimoto, T., Tsuru, D., Sato, M., and Clardy, J. (1999). The crystal structure of pyroglutamyl peptidase I from Bacillus amyloliquefaciens reveals a new structure for a cysteine protease. Structure 7: 399–411.

    Article  CAS  Google Scholar 

  • Piard, J.-C., Hautefort, I., Fischetti, V. A., Ehrlich, S. D., Fons, M., and Gruss, A. (1997). Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. Journal of Bacteriology 179: 3068–3072.

    CAS  Google Scholar 

  • Picon, A., Kunji, E. R. S., Lanfermeijer, F. C., Konings, W. N., and Poolman, B. (2000). Specificity mutants of the binding protein of the oligopeptide transport system of Lactococcus lactis. Journal of Bacteriology 182: 1600–1608.

    Article  CAS  Google Scholar 

  • Poquet, I., Saint, V., Seznec, E., Simoes, N., Bolotin, A., and Gruss, A. (2000). HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Molecular Microbiology 35: 1042–1051.

    Article  CAS  Google Scholar 

  • Pritchard, G. G., and Coolbear, T. (1993). The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiological Reviews 12: 179–206.

    Article  CAS  Google Scholar 

  • Rank, T. C., Grappin, R., and Olson, N. F. (1985). Secondary proteolysis of cheese during ripening: A review. Journal of Dairy Science 68: 801–805.

    Article  CAS  Google Scholar 

  • Reid, J. R., Coolbear, T., Pillidge, C. J., and Pritchard, G. G. (1994). Specificity of hydrolysis of bovine k-casein by cell envelope-associated proteinases from Lactococcus lactis strains. Applied and Environmental Microbiology 60: 801–806.

    CAS  Google Scholar 

  • Reid, J. R., Ng, K. H., Moore, C. H., Coolbear, T., and Pritchard, G. G. (1991b). Comparison of bovine ß-casein hydrolysis by PI and PIII-type proteinases from Lactococcus lactis subsp. cremoris. Applied Microbiology and Biotechnology 36: 344–351.

    Article  Google Scholar 

  • Reid, J. R., Moore C. H., Midwinter, G. G., and Pritchard, G. G. (1991a). Action of a cell wall proteinase from Lactococcus lactis subsp. cremoris SK11 on bovine αsl-casein. Applied Microbiology and Biotechnology 35: 222–227.

    Article  Google Scholar 

  • Ross, R. P., Galvin, M., Mcauliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., Meaney, W. J., and Hill, C. (1999). Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek 76: 337–346.

    Article  CAS  Google Scholar 

  • Rudd, K. E., Sofia, J. H., Koonin, E. V., Plunkett G. III, Lazar, S., and Rouviere, P. E. (1995). A new family of peptidyl-prolyl isomerases. Trends in Biochemical Sciences 20: 12–14.

    Article  CAS  Google Scholar 

  • Sarkis, K. M., Liu, G., Ton-That, H., and Schneewind, O. (1999). Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Nature 285: 760–763.

    Google Scholar 

  • Schick, J., Weber, B., Klein, J. R., and Henrich, B. (1999). PepRl, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis. Microbiology 145: 3147–3154.

    CAS  Google Scholar 

  • Siezen, R. J. (1999). Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie van Leeuwenhoek 76: 139–155.

    Article  CAS  Google Scholar 

  • Siezen, R. J., Bruinenberg, P. G., Vos, P., van Alen-Boerrigter, I. J., Nijhuis, M., Alting, A. C., Exterkate, F. A., and de Vos, W. M. (1993). Engineering of the substrate binding region of the subtilisin-like, cell envelope proteinase of Lactococcus lactis. Protein Engineering 6: 927–937.

    Article  CAS  Google Scholar 

  • Siezen, R. J., and Leunissen, J. A. M. (1997). Subtilases: the superfamily of subtilisin-like serine proteases. Protein Science 6: 501–523.

    Article  CAS  Google Scholar 

  • Siezen, R. J., de Vos, W. M., Leunissen, J. A. M., and Dijkstra, B. W. (1991). Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like proteinases. Protein Engineering 4: 719–737.

    Article  CAS  Google Scholar 

  • Singleton, M. R., Isupov, M. N., and Littlechild, J. A. (1999). X-ray structure of pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Thermococcus litoralis. Structure 7: 237–244.

    Article  CAS  Google Scholar 

  • Smid, E. J., Driessen, A. J., and Konings, W. N. (1989). Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. Journal of Bacteriology 171: 292–298.

    CAS  Google Scholar 

  • Sørensen, K. I., Larsen, R., Kibenich, A., Junge, M. P., and Johansen, E. (2000). A food-grade system for industrial strains of Lactococcus lactis. Applied and Environmental Microbiology 66: 1253–1258.

    Article  Google Scholar 

  • Stadhouders, J., Toepoel, L., and Wouters, J. T. M. (1988). Cheese making with prt and prt+ variants of N-streptococci and their mixtures. Phage sensitivity, proteolysis and flavour development during ripening. Netherlands Milk Dairy Journal 42: 183–193.

    Google Scholar 

  • Steiner, H. Y., Naider, F., and Becker, J. M. (1995). The PTR family: a new group of peptide transporters. Molecular Microbiology 16: 825–834.

    Article  CAS  Google Scholar 

  • Strøman, P., Williams, D., Behrndt, H., and Johansen, E. (1998). Starter cultures with genetically modified peptidase activity for production of cheese. Proceedings, 1st Int. Symposium on Enzymatic Protein Processing, Noordwijkerhout, The Netherlands.

    Google Scholar 

  • Strøman, P. (1992). Sequence of a gene (lap) encoding a 95.3-kDa aminopeptidase from Lactococcus lactis ssp. cremoris Wrg2. Gene 113: 107–112.

    Article  Google Scholar 

  • Tan, P. S. T., van Alen-Boerrigter, I. J., Poolman, B., Siezen, R. J., de Vos, W. M., and Konings, W. N. (1992). Characterization of the Lactococcus lactis pepN gene encoding an aminopeptidase homologous to mammalian aminopeptidase N. FEB S Letters 306: 9–16.

    Article  CAS  Google Scholar 

  • Tan, P. S. T., and Konings, W. N. (1990). Purification and characterization of an aminopeptidase from Lactococcus lactis ssp. cremoris Wg2. Applied and Environmental Microbiology 56: 526–532.

    CAS  Google Scholar 

  • Tan, P. S. T., Van Kessel, T. A. J. M., Van De Veerdonk, F. L. M., Zuurendonk, P. F., Bruins, A. P., and Konings, W. N. (1993). Degradation and debittering of a tryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2. Applied and Environmental Microbiology 59: 1430–1436.

    CAS  Google Scholar 

  • Thomas, T. D., and Pritchard, G. G. (1987). Proteolytic enzymes of dairy starter cultures. FEMS Microbiological Reviews 46: 245–268.

    Article  CAS  Google Scholar 

  • Tynkkynen, S., Buist, G., Kunji, E., Kok, J., Poolman, B., Venema, G., and Haandrikman, A. (1993). Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. Journal of Bacteriology 175: 7523–7532.

    CAS  Google Scholar 

  • van Alen-Boerrigter, I. J., Baankreis, R., and de Vos, W. M. (1991). Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N. Applied and Environmental Microbiology 57: 2555–2561.

    Google Scholar 

  • van Boven, A., Tan, P. S. T., and Konings, W. N. (1988). Purification and characterization of a dipeptidase from Streptococcus cremoris Wg2. Applied and Environmental Microbiology 54: 43–49.

    Google Scholar 

  • van De Guchte, M., Kodde, J., Van der Vossen, J. M. B. M., KOK, J., and Venema, G. (1990). Heterologous gene expression in Lactococcus lactis subsp. lactis: Synthesis, secretion, and processing of the Bacillus subtilis neutral protease. Applied and Environmental Microbiology 56: 2606–2611.

    Google Scholar 

  • van Der Meer, J. R., Polman, J., Beerthuyzen, M. M., Siezen, R. J., Kuipers, O. P., and de Vos, W M. (1993). Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. Journal of Bacteriology 175: 2578–2588.

    Google Scholar 

  • van der Vossen, J. M. B. M., Kodde, J., Haandrikman, A. J., Venema, G., and Kok, J. (1992). Characterization of transcription initiation and termination signals of the proteinase genes of Lactococcus lactis Wg2 and enhancement of proteolysis in L. lactis. Applied and Environmental Microbiology 58: 3142–3149.

    Google Scholar 

  • Venema, K., Kok, J., Marugg, J. D., Toonen, M. Y., Ledeboer, A. M., Venema, G., and Chikindas, M. L. (1995). Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Molecular Microbiology 17: 515–522.

    Article  CAS  Google Scholar 

  • Visser, S. (1993). Proteolytic enzymes and their relation to cheese ripening and flavor: An overview. Journal of Dairy Science 76: 329–350.

    Article  CAS  Google Scholar 

  • Visser, S., Exterkate, F. A., Slangen, K. J., and De Veer, G. J. C. M. (1986). Comparative study of the action of cell wall proteinases from various strains of Streptococcus cremoris on bovine αsl-ß- and k-casein. Applied and Environmental Microbiology 52: 1162.

    CAS  Google Scholar 

  • Visser, S., Robben, A. J. P. M., and Slangen, C. J. (1991). Specificity of a cell-envelope-located proteinase (PIII-type) from Lactococcus lactis subsp. cremoris AM1 in its action on bovine ß-casein. Applied Microbiology and Biotechnology 35: 477–483.

    Article  CAS  Google Scholar 

  • Visser, S., Slangen, C. J., Exterkate, F. A., and De Veer, G. J. C. M. (1988). Action of a cell wall proteinase (P I ) from Streptococcus cremoris HP on bovine ß-casein. Applied Microbiology and Biotechnology 29: 61–66.

    Article  CAS  Google Scholar 

  • Visser, S., Slangen, C. J., Robben, A. J. P. M., Van Dongen, W. D., Heerma, W., and Haverkamp, J. (1994). Action of a cell-envelope proteinase (CEP III -type) from Lactococcus lactis subsp. cremoris AM1 on bovine ß-casein. Applied Microbiology and Biotechnology 41: 644–651.

    CAS  Google Scholar 

  • Von Heijne, G. (1983). Pattern of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry 133: 17–21.

    Article  Google Scholar 

  • Vos, P., Boerrigter, I. J., Buist, G., Haandrikman, A. J., Nijhuis, M., De Reuver, M. B., Siezen, R. J., Venema, G., de Vos, W. M., and Kok, J. (1991). Engineering of the Lactococcus lactis proteinase by construction of hybrid enzymes. Protein Engineering 4: 479–484.

    Article  CAS  Google Scholar 

  • Vos, P., Simons, G., Siezen, R. J., and De Vos, W. M. (1989a). Primary structure and organization of the gene for a prokaryotic cell-envelope-located serine proteinase. Journal of Biological Chemistry 264: 13579–13585.

    Google Scholar 

  • Vos, P., Van Asseldonk, M., Van Jeveren, F., Siezen, R. J., Simons, G., and De Vos, W. M. (1989b). A maturation protein is essential for the production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. Journal of Bacteriology 171: 2795–2802.

    Google Scholar 

  • Waller, P. R. H., and Sauer, R. T. (1996). Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. Journal of Bacteriology 178: 1146–1153.

    CAS  Google Scholar 

  • Wegmann, U., Klein, J. R., Drumm, I., Kuipers, O. P., and Henrich, B. (1999). Introduction of peptidase genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and controlled expression. Applied and Environmental Microbiology 65: 4729–4733.

    CAS  Google Scholar 

  • Weimer, B., Seefeldt, K., and Dias, B. (1999). Sulfur metabolism in bacteria associated with cheese. Antonie van Leeuwenhoek 76: 247–261.

    Article  CAS  Google Scholar 

  • Whitaker, R. D., and Batt, C. A. (1991). Characterization of the heat shock response in Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology 57: 1408–1412.

    CAS  Google Scholar 

  • Zevaco, C., Monnet, V., and Gripon, J.-C. (1990). Intracellular X-prolyl dipeptidyl peptidase from Lactococcus lactis ssp. lactis: Purification and properties. Journal of Applied Bacteriology 68: 357–366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kok, J., Buist, G. (2003). Genetics of Proteolysis in Lactococcus lactis . In: Wood, B.J.B., Warner, P.J. (eds) Genetics of Lactic Acid Bacteria. The Lactic Acid Bacteria, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0191-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0191-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4959-4

  • Online ISBN: 978-1-4615-0191-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics