Skip to main content

Electroelastic Stability

  • Chapter
  • First Online:
  • 1701 Accesses

Abstract

In this chapter the incremental equations governing static electroelastic interactions are used to analyze the stability of a half-space of an electroelastic material subject to a pure homogeneous strain and an electric field normal to its plane boundary. The analysis is formulated for a general isotropic electroelastic energy function and for plane strain. The results are illustrated for a simple neo-Hookean electroelastic model. In particular, the critical stretch corresponding to loss of stability is obtained as a function of the electric field for a series of values of the material parameters included in the model. In general the half-space is more unstable when an electric field is applied compared with the classical problem in which the stability of a half-space is lost under compression parallel to its boundary, but for a range of values of the electric field and the material parameters, stability is enhanced. The problem of a plate of finite thickness is then analyzed and the stability characteristics determined in terms of the plate thickness for a plate with or without flexible electrodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baesu E, Fortune D, Soós E (2003) Incremental behaviour of hyperelastic dielectrics and piezoelectric crystals. Z Angew Math Phys (ZAMP) 54:160–178

    Article  MATH  Google Scholar 

  • Baumhauer JC, Tiersten HF (1973) Nonlinear electroelastic equations for small fields superimposed on a bias. J Acoust Soc Am 54:1017–1034

    Article  MATH  Google Scholar 

  • Bertoldi K, Gei M (2011) Instabilities in multilayered soft dielectrics. J Mech Phys Solids 59:18–42

    Article  MATH  MathSciNet  Google Scholar 

  • Biot MA (1965) Mechanics of incremental deformations. Wiley, New York

    Google Scholar 

  • Carroll MM (1972) Plane waves of constant amplitude in nonlinear dielectrics. Phys Rev A 6:1977–1980

    Article  Google Scholar 

  • Chai J-F, Wu T-T (1996) Propagation of surface waves in a prestressed piezoelectric material. J Acoust Soc Am 100:2112–2122

    Article  Google Scholar 

  • Chen W, Dai HH (2012) Waves in pre-stretched incompressible soft electroactive cylinders: exact solution. Acta Mech Solida Sinica 25:530–541

    Article  Google Scholar 

  • Collet B, Destrade M, Maugin GA (2006) Bleustein–Gulyaev waves in some functionally graded materials. Eur J Mech A/Solids 25:695–706

    Article  MATH  MathSciNet  Google Scholar 

  • Díaz-Calleja R, Sanchis MJ, Riande E (2009) Effect of an electric field on the deformation of incompressible rubbers: bifurcation phenomena. J Electrostat 67:158–166

    Article  Google Scholar 

  • Dorfmann A, Ogden RW (2010a) Nonlinear electroelasticity: incremental equations and stability. Int J Eng Sci 48:1–14

    Article  MATH  MathSciNet  Google Scholar 

  • Dorfmann A, Ogden RW (2010b) Electroelastic waves in a finitely deformed electroactive material. IMA J Appl Math 75:603–636

    Article  MATH  MathSciNet  Google Scholar 

  • Dowaikh MA, Ogden RW (1990) On surface waves and deformations in a pre-stressed incompressible elastic solid. IMA J Appl Math 44:261–284

    Article  MATH  MathSciNet  Google Scholar 

  • Hu YT, Yang JS, Jiang Q (2004) Surface waves in electrostrictive materials under biasing fields. Z Angew Math Phys 55:678–700

    Article  MATH  MathSciNet  Google Scholar 

  • Li S (1996) The electromagneto-acoustic surface wave in a piezoelectric medium: the BleusteinGulyaev mode. J Appl Phys 80:5264–5269

    Article  Google Scholar 

  • Liu H, Kuang ZB, Cai ZM (2003) Propagation of Bleustein–Gulyaev waves in a prestressed layered piezoelectric structure. Ultrasonics 41:397–405

    Article  Google Scholar 

  • Ogden RW, Roxburgh DG (1993) The effect of pre-stress on the vibration and stability of elastic plates. Int J Eng Sci 31:1611–1639

    Article  MATH  MathSciNet  Google Scholar 

  • Paria G (1973) Love waves in electrostrictive dielectric media. J Eng Math 7:33–37

    Article  Google Scholar 

  • Paria G (1974) Rayleigh waves in electrostrictive dielectric solids. J Eng Math 8:93–97

    Article  MATH  Google Scholar 

  • Pouget J, Maugin GA (1981) Piezoelectric Rayleigh waves in elastic ferroelectrics. J Acoust Soc Am 69:1319–1325

    Article  MATH  Google Scholar 

  • Rudykh S, deBotton G (2011) Stability of anisotropic electroactive polymers with application to layered media. Z Angew Math Phys (ZAMP) 62:1131–1142

    Article  MATH  MathSciNet  Google Scholar 

  • Shmuel G, Gei M, deBotton G (2012) The Rayleigh-Lamb wave propagation in dielectric elastomer layers subjected to large deformations. Int J Non-Linear Mech 47:307–316

    Article  Google Scholar 

  • Shmuel G, deBotton G (2013) Axisymmetric wave propagation in finitely deformed dielectric elastomer tubes. Proc R Soc Lond A 469:20130071

    Article  Google Scholar 

  • Simionescu-Panait O (2002) Wave propagation in cubic crystals subject to initial mechanical and electric fields. Z Angew Math Phys (ZAMP) 53:1038–1051

    Article  MATH  MathSciNet  Google Scholar 

  • Singh B (2010) Wave propagation in a prestressed piezoelastic half-space. Acta Mech 211:337–344

    Article  MATH  Google Scholar 

  • Sinha BK, Tiersten HF (1979) On the influence of a flexural biasing state on the velocity of piezoelectric surface waves. Wave Motion 1:37–51

    Article  Google Scholar 

  • Yang JS (2001) Bleustein–Gulyaev waves in strained piezoelectric ceramics. Mech Res Com 28:679–683

    Article  MATH  Google Scholar 

  • Yang JS, Hu Y (2004) Mechanics of electroelastic bodies under biasing fields. Appl Mech Rev 57:173–189

    Article  Google Scholar 

  • Zhao X, Suo Z (2007) Method to analyze electromechanical stability of dielectric elastomers. Appl Phys Lett 91:061921

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorfmann, L., Ogden, R.W. (2014). Electroelastic Stability. In: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9596-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9596-3_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-9595-6

  • Online ISBN: 978-1-4614-9596-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics