Skip to main content

The Role of p53 in Carcinogenesis and Apoptosis in Oral Tissues

  • Chapter
  • First Online:
Book cover Studies on Periodontal Disease
  • 1758 Accesses

Abstract

Reactive oxygen species (ROS) cause DNA double-strand or single-strand breaks. ROS form one of the main causes of DNA damage. Environmental factors as well as host factors increase ROS. The volatile sulfur compounds in the oral cavity, especially oral malodorous compounds, are the most probable producers of ROS. The functions of p53 involve causing p53-dependent apoptosis, repairing DNA-strand errors and arresting the cell cycle for DNA repair. A signal network reacting to DNA or genomic damage selects either apoptosis or the repair of DNA breaks after the cellular DNA or genome is damaged. The network involves the checkpoints: p53, Ataxia-telangiectasia and Rad3-related (ATR), and Ataxia-telangiectasia mutated (ATM) protein kinase have important roles. The signal network works together with the cell cycle. Checkpoints in the network hold the cell cycle at a certain point. Genotoxicity, in which checkpoint kinase 1 and 2 also have important roles, controls the network, including the checkpoints, indirectly. There are three groups of checkpoints: cell-cycle checkpoints (DNA-damage checkpoints), DNA-replication checkpoints, and the spindle checkpoint. These checkpoints detect DNA damage and then promote either DNA repair or cell death. Because of this system the cell preserves genomic integrity. In other words, the cell and/or the host can eliminate genomic error from the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Enoch T, Norbury C (1995) Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 20:426–430

    Article  CAS  PubMed  Google Scholar 

  2. Meyn MS (1995) Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 55:5991–6001

    CAS  PubMed  Google Scholar 

  3. Meyn MS (1997) Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 57:2313–2315

    Google Scholar 

  4. Aoyama I, Calenic B, Imai T et al (2012) Oral malodorous compound causes caspase-8 and -9 mediated programmed cell death in osteoblasts. J Periodontal Res 47:365–373

    Article  CAS  PubMed  Google Scholar 

  5. Calenic B, Yaegaki K, Ishkitiev N et al (2012) p53-Pathway activity and apoptosis in hydrogen sulfide-exposed stem cells separated from human gingival epithelium. J Periodontal Res. doi:10.1111/jre.12011

    Google Scholar 

  6. Calenic C, Yaegaki K, Kozhuharova A et al (2010) Oral malodorous compound causes oxidative stress and p53-mediated programmed cell death in keratinocyte stem cells. J Periodontol 81:1317–1323

    Article  CAS  PubMed  Google Scholar 

  7. Calenic B, Yaegaki K, Murata T et al (2010) Oral malodorous compound triggers mitochondrial-dependent apoptosis and causes genomic DNA damage in human gingival epithelial cells. J Periodontal Res 45:31–37

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi C, Yaegaki K, Calenic B et al (2011) Hydrogen sulfide causes apoptosis in human pulp stem cells. J Endod 37:479–484

    Article  PubMed  Google Scholar 

  9. Fujimura M, Calenic B, Yaegaki K et al (2010) Oral mal odorous compound activates mitochondrial pathway inducing apoptosis in human gingival fibroblasts. Clin Oral Investig 14(367–373):2010

    Google Scholar 

  10. Yaegaki K, Qian W, Murata T et al (2008) Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblasts. J Periodontal Res 43:391–399

    Article  CAS  PubMed  Google Scholar 

  11. Bellini MF, Cadamuro AC, Succi M et al (2012) Alterations of the TP53 gene in gastric and esophageal carcinogenesis. J Biomed Biotechnol 2012:891961

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lane DP (1992) p53, guardian of the genome. Nature 358:15–16

    Article  CAS  PubMed  Google Scholar 

  13. Sato Y, Tsurumi T (2012) Genome guardian p53 and viral infections. Rev Med Virol. doi:10.1002/rmv.1738

    PubMed  Google Scholar 

  14. Todd R, Hinds PW, Munger K et al (2002) Cell cycle dysregulation in oral cancer. Crit Rev Oral Biol Med 13:51–61

    Article  CAS  PubMed  Google Scholar 

  15. Trenz K, Smith E, Smith S et al (2006) ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J 25:1764–1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Langerak P, Russell P (2011) Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond B Biol Sci 366:3562–3571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Landau DA, Slack FJ (2011) MicroRNAs in mutagenesis, genomic instability and DNA repair. Semin Oncol 38:743–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tian B, Yang Q, Mao Z (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signaling and regulates neuronal death. Nat Cell Biol 11:211–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kinner A, Wu W, Staudt C et al (2008) c-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lau AW, Fukushima H, Wei W (2011) The Fbw7 and beta-TRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci 17:2197–2212

    Article  Google Scholar 

  21. Doorbar J (2005) The papillomavirus life cycle. J Clin Virol 32S:S7–S15

    Article  Google Scholar 

  22. Feller L, Wood NH, Khammissa RA et al (2010) Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngealsquamous cell carcinoma. Part 1: human papillomavirus-mediated carcinogenesis. Head Face Med 6:14

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mirzayans R, Andrais B, Scott A et al (2012) New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012:170325

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dai Y, Grant S (2010) New insights into checkpoint kinase 1 (Chk1) in the DNA damage response (DDR) signaling network: rationale for employing Chk1 inhibitors in cancer therapeutics. Clin Cancer Res 16:376–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Machida YJ, Hamlin JL, Dutta A (2005) Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24

    Article  CAS  PubMed  Google Scholar 

  26. Boye E, Grallert B (2009) In DNA replication, the early bird catches the worm. Cell 136:812–814

    Article  CAS  PubMed  Google Scholar 

  27. Katsuno Y, Suzuki A, Sugimura K et al (2009) Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc Natl Acad Sci U S A 106:3184–3189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Soultanas P (2012) Loading mechanisms of ring helicases at replication origins. Mol Microbiol 84:6–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nethanel T, Reisfeld S, Dinter-Gottlieb G et al (1988) An Okazaki piece of simian virus 40 may be synthesized by ligation of shorter precursor chains. J Virol 62:2867–2873

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Branzei D, Foiani M (2005) The DNA damage response during DNA replication. Curr Opin Cell Biol 17:568–575

    Article  CAS  PubMed  Google Scholar 

  31. Petermann E, Helleday T (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11:683–687

    Article  CAS  PubMed  Google Scholar 

  32. Branzei D, Foiani M (2009) The checkpoint response to replication stress. DNA Repair 8:1038–1046

    Article  CAS  PubMed  Google Scholar 

  33. Shimada K, Oma Y, Schleker T et al (2008) Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr Biol 18:566–575

    Article  CAS  PubMed  Google Scholar 

  34. Allen C, Ashley AK, Hromas R et al (2011) More forks on the road to replication stress recovery. J Mol Cell Biol 3:4–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Saintigny Y, Delacote F, Vares G et al (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20:3861–3870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Uchida KS, Takagaki K, Kumada K et al (2009) Kinetochore stretching inactivates the spindle assembly checkpoint. J Cell Biol 184:383–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. May KM, Hardwick KG (2006) The spindle checkpoint. J Cell Sci 119:4139–4142

    Article  CAS  PubMed  Google Scholar 

  38. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421

    Google Scholar 

  39. Maiato H, DeLuca J, Salmon ED et al (2004) The dynamic kinetochore-microtubule interface. J Cell Sci 117:5461–5477

    Article  CAS  PubMed  Google Scholar 

  40. Musacchio A, Hardwick KG (2002) The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 3:731–741

    Article  CAS  PubMed  Google Scholar 

  41. Yu H (2002) Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol 14:706–714

    Article  CAS  PubMed  Google Scholar 

  42. Rieder CL, Cole RW, Khodjakov A et al (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130:941–948

    Google Scholar 

  43. Maresca TJ, Salmon ED (2009) Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J Cell Biol 184:373–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Musacchio A (2011) Spindle assembly checkpoint: the third decade. Philos Trans R Soc Lond B Biol Sci 366:3595–3604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Skoufias DA, Andreassen PR, Lacroix FB et al (2001) Mammalian mad2 and bub1/bubR1 recognize distinct spindle attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci U S A 98:4492–4497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bharadwaj R, Yu H (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene 23:2016–2027

    Article  CAS  PubMed  Google Scholar 

  47. Smith ML, Seo YR (2002) p53 Regulation of DNA excision repair pathways. Mutagenesis 17:149–156

    Article  CAS  PubMed  Google Scholar 

  48. Lu X, Nguyen TA, Appella E et al (2004) Homeostatic regulation of base excision repair by a p53-induced phosphatase: linking stress response pathways with DNA repair proteins. Cell Cycle 3:1363–1366

    Article  CAS  PubMed  Google Scholar 

  49. Wilson DM 3rd, Kim D, Berquist BR et al (2011) Variation in base excision repair capacity. Mutat Res 711:100–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Smith ML, Chen IT, Zhan Q et al (1995) Involvement of the p53 tumor suppressor in repair of UV-type DNA damage. Oncogene 10:1053–1059

    CAS  PubMed  Google Scholar 

  51. Smith ML, Ford JM, Hollander MC et al (2000) p53-Mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Li X, Coffino P (1996) High-risk human papilloma virus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J Virol 70:4509–4516

    CAS  PubMed Central  PubMed  Google Scholar 

  53. McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/Mek/Erk pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450

    Article  CAS  PubMed  Google Scholar 

  55. Chen ZX, Riggs AD (2011) DNA methylation and demethylation in mammals. J Biol Chem 286:18347–18353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Downs JA (2007) Chromatin structure and DNA double-strand break responses in cancer progression and therapy. Oncogene 26:7765–7772

    Article  CAS  PubMed  Google Scholar 

  57. Baxevanis AD, Arents G, Moudrianakis EN et al (1995) A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res 23:2685–2691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Yaegaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yaegaki, K. (2014). The Role of p53 in Carcinogenesis and Apoptosis in Oral Tissues. In: Ekuni, D., Battino, M., Tomofuji, T., Putnins, E. (eds) Studies on Periodontal Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9557-4_7

Download citation

Publish with us

Policies and ethics