Skip to main content

Interfacial Structure Determination

  • Chapter
  • First Online:

Abstract

The understanding of biomolecule structure at the nanoparticle interface is critical for the design of sensors containing nanoparticles and biological recognition elements. While many inorganic binding peptides have been identified from phage display and other experiments, the relationship between the peptide sequence, structure, and functional properties at the interface have not been identified. The structure of biomolecules at the interface can be determined with the tools (Circular Dichroism (CD), Fourier transform infra-red (FTIR), and nuclear magnetic resonance (NMR)) traditionally used for protein structure determination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adey NB, Mataragnon AH, Rider JE, Carter JM, Kay BK (1995) Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene 156(1):27-31. doi:http://dx.doi.org/10.1016/0378-1119(95)00058-E

    Google Scholar 

  • Andronesi OC, Heise H, Baldus M (2006) Determining protein 3D structure by magic angle spinning NMR. Mod Magn Reson 1:523–526

    Google Scholar 

  • Badia A, Cuccia L, Demers L, Morin F, Lennox RB (1997) Structure and dynamics in Alkanethiolate monolayers self-assembled on gold nanoparticles: a DSC, FT-IR, and deuterium NMR study. J Am Chem Soc 119(11):2682–2692

    Article  Google Scholar 

  • Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSIN: a general simulation program for solid-state NMR spectroscopy. J Mag Reson 147:296–330

    Article  Google Scholar 

  • Baldus M (2006) Solid-state NMR spectroscopy: molecular structure and organization at the atomic level. Angew Chem Int Ed 45(8):1186–1188

    Article  Google Scholar 

  • Bartik K, Dobson CM, Redfield C (1993) H-1-NMR analysis of turkey egg-white lysozyme and comparison with hen egg-white lysozyme. Eur J Biochem 215(2):255–266. doi:10.1111/j.1432-1033.1993.tb18030.x

    Article  Google Scholar 

  • Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15(3):269–272

    Article  Google Scholar 

  • Calzolai L, Franchini F, Gilliland D, Rossi F (2010) Protein-nanoparticle interaction: identification of the ubiquitin-gold nanoparticle interaction site. Nano Lett 10(8):3101–3105. doi:10.1021/nl101746v

    Article  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci 104:9615–9620

    Article  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Parlmer AG III, Rance M, Skelton NJ (2007) Protein NMR spectroscopy: principles and practice. Elsevier Academic Press, Burlington

    Google Scholar 

  • Coppage R, Slocik JM, Sethi M, Pacardo DB, Naik RR, Knecht MR (2010) Elucidation of peptide effects that control the activity of nanoparticles. Angew Chem Int Ed 122(22):3855–3858. doi:10.1002/ange.200906949

    Article  Google Scholar 

  • Coppage R, Slocik JM, Briggs BD, Frenkel AI, Heinz H, Naik RR, Knecht MR (2011) Crystallographic recognition controls peptide binding for bio-based nanomaterials. J Am Chem Soc 133(32):12346–12349. doi:10.1021/ja203726n

    Article  Google Scholar 

  • Coppage R, Slocik JM, Briggs BD, Frenkel AI, Naik RR, Knecht MR (2012) Determining peptide sequence effects that control the size, structure, and function of nanoparticles. ACS Nano 6(2):1625–1636. doi:10.1021/nn204600d

    Article  Google Scholar 

  • Croasmun WR, Carlson MK (eds) (1994) Two-Dimensional NMR. Applications for Chemists and Biochemists. Methods in Stereochemical Analysis. VCH Publishers, Inc., New York

    Google Scholar 

  • Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and Peptide-directed syntheses of inorganic materials. Chem Rev 108(11):4935–4978

    Article  Google Scholar 

  • Drobny GP, Long JR, Karlsson T, Shaw W, Popham J, Oyler N, Bower P, Stringer J, Gregory D, Mehta M, Stayton PS (2003) Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy. Ann Rev Phys Chem 54:531–571

    Article  Google Scholar 

  • Elgavish GA, Hay DI, Schlesinger DH (1984) 1H and 31P nuclear magnetic resonance studies of human salivary statherin. Int J Pept Protein Res 23(3):230–234. doi:10.1111/j.1399-3011.1984.tb02714.x

    Article  Google Scholar 

  • Fernandez VL, Reimer JA, Denn MM (1992) Magnetic Resonance Studies of Polypeptides Adsorbed on Silica and Hydroxyapatite Surfaces. J Am Chem Soc 114:9634-9642

    Google Scholar 

  • Gibson JM, Raghunathan V, Popham JM, Stayton PS, Drobny GP (2005) A REDOR NMR study of a phosphorylated statherin fragment bound to hydroxyapatite crystals. J Am Chem Soc 127(26):9350–9351

    Article  Google Scholar 

  • Goobes G, Goobes R, Schueler-Furman O, Baker D, Stayton PS, Drobny GP (2006) Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals. Proc Natl Acad Sci USA 103(44):16083–16088

    Article  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  Google Scholar 

  • Greenfield NJ, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8(10):4108–4116

    Article  Google Scholar 

  • Gullion T, Schaefer J (1989) Rotational-echo double resonance NMR. J Magn Reson 81:196–200

    Google Scholar 

  • Heinz H, Vaia RA, Farmer BL, Naik RR (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones Potentials. J Phys Chem C 112(44):17281–17290. doi:10.1021/jp801931d

    Article  Google Scholar 

  • Heinz H, Farmer BL, Pandey RB, Slocik JM, Patnaik SS, Pachter R, Naik RR (2009) Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution. J Am Chem Soc 131(28):9704–9714. doi:10.1021/ja900531f

    Article  Google Scholar 

  • Hnilova M, Oren EE, Seker UOS, Wilson BR, Collino S, Evans JS, Tamerler C, Sarikaya M (2008) Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir 24(21):12440–12445. doi:10.1021/la801468c

    Article  Google Scholar 

  • Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein-structure. Crit Rev Biochem Mol Biol 30(2):95–120. doi:10.3109/10409239509085140

    Article  Google Scholar 

  • Katoch J, Kim SN, Kuang Z, Farmer BL, Naik RR, Tatulian SA, Ishigami M (2012) Structure of a peptide adsorbed on graphene and graphite. Nano Lett 12(5):2342–2346. doi:10.1021/nl300286k

    Article  Google Scholar 

  • Kogot JM, Parker AM, Lee J, Blaber M, Strouse GF, Logan TM (2009) Analysis of the Dynamics of assembly and structural impact for a histidine tagged FGF1–1.5 nm Au Nanoparticle Bioconjugate. Bioconjug Chem 20(11):2106–2113. doi:10.1021/bc900224d

    Article  Google Scholar 

  • Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  Google Scholar 

  • Kuang ZF, Kim SN, Crookes-Goodson WJ, Farmer BL, Naik RR (2010) Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 4(1):452–458. doi:10.1021/nn901365g

    Article  Google Scholar 

  • Long JR, Shaw WJ, Stayton PS, Drobny GP (2001) Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. Biochemistry 40(51):15451–15455

    Article  Google Scholar 

  • Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotech 22:211

    Article  Google Scholar 

  • Mafra L, Siegel R, Fernandez C, Schneider D, Aussenac F, Rocha J (2009) High-resolution 1H homonuclear dipolar recoupling NMR spectra of biological solids at MAS rates of to 67 kHz. J Magn Reson 199:111–114

    Article  Google Scholar 

  • Mandal HS, Kraatz H-B (2007) Effect of the surface curvature on the secondary structure of peptides adsorbed on nanoparticles. J Am Chem Soc 129(20):6356–6357. doi:10.1021/ja0703372

    Article  Google Scholar 

  • Masica DL, Ash JT, Ndao M, Drobny GP, Gray JJ (2010) Toward a structure determination method for biomineral-associated protein using combined solid-state NMR and computational structure prediction. Structure 18(12):1678–1687. doi:10.1016/j.str.2010.09.013

    Article  Google Scholar 

  • Mayer M, Mayer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117

    Google Scholar 

  • Mirau PA, Serres JL, Lyons M (2008) The structure and dynamics of Poly(l-lysine) in templated silica nanocomposites. Chem Mater 20(6):2218–2223. doi:10.1021/cm702283u

    Article  Google Scholar 

  • Mirau PA, Naik RR, Gehring P (2011) Structure of peptides on metal oxide surfaces probed by NMR. J Am Chem Soc 133(45):18243–18248. doi:10.1021/ja205454t

    Article  Google Scholar 

  • Miura Y, Kimura S, Imanishi Y, Umemura J (1999) Oriented helical peptide layer on the carboxylate-terminated alkanethiol immobilized on a gold surface. Langmuir 15(4):1155–1160. doi:10.1021/la9803878

    Article  Google Scholar 

  • Mirau PA, Naik RR, Coppage R, Knecht MR, Ramezani-DakHel H, Heinz H, Vaia RA, Kotlarchyk M (2014) The Structure of peptides at the palladium nanoparticle interface (submitted)

    Google Scholar 

  • Naganagowda GA, Gururaja TL, Levine MJ (1998) Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: sequential assignments and structure-function correlations. J Biomol Struct Dyn 16:91–107

    Article  Google Scholar 

  • Naik RR, Brott LL, Clarson SJ, Stone MO (2002a) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 2(1):95–100

    Article  Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002b) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1(3):169–172

    Article  Google Scholar 

  • Ndao M, Ash JT, Breen NF, Goobes G, Stayton PS, Drobny GP (2009) A 13C{31P} REDOR NMR investigation of the role of glutamic acid residues in statherin-hydroxyapatite recognition. Langmuir 25(20):12136–12143

    Article  Google Scholar 

  • Ndao M, Ash JT, Stayton PS, Drobny GP (2010) The role of basic amino acids in the molecular recognition of hydroxyapatite by statherin using solid state NMR. Surf Sci 604(15–16):L39–L42. doi:10.1016/j.susc.2010.02.026

    Article  Google Scholar 

  • Oren EE, Notman R, Kim IW, Evans JS, Walsh TR, Samudrala R, Tamerler C, Sarikaya M (2010) Probing the molecular mechanisms of quartz-binding peptides. Langmuir 26(13):11003–11009

    Article  Google Scholar 

  • Pacardo DB, Sethi M, Jones SE, Naik RR, Knecht MR (2009) Biomimetic synthesis of Pd nanocatalysts for the stille coupling reaction. ACS Nano 3(5):1288–1296

    Article  Google Scholar 

  • Parmar AS, Muschol M (2009) Hydration and hydrodynamic interactions of lysozyme: effects of chotropic versus kosmotropic ions. Biophys J 97(2):590–598

    Article  Google Scholar 

  • Renault M, Cukkemane A, Baldus M (2010) Solid-state NMR spectroscopy on complex biomolecules. Angewandte Chemie Int Ed 49(45):8346–8357. doi:10.1002/anie.201002823

    Article  Google Scholar 

  • Sano KI, Shiba K (2003) A hexapeptide mofif that electrostatically binds to the surface of titanium. J Am Chem Soc 125:14234–14235

    Article  Google Scholar 

  • Sano KI, Sasaki H, Shiba K (2005) Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1). Langmuir 21:3090–3095

    Article  Google Scholar 

  • Schmidt-Rohr K, Speiss HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, New York

    Google Scholar 

  • Schwietters CD, Kuszewski JJ, Clore G (2006) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Mag Res Spectrosc 48:47–62

    Article  Google Scholar 

  • Shaw CP, Middleton DA, Volk M, Levy R (2012) Amyloid-derived peptide forms self-assembled mono layers on gold nanoparticle with a curvature-dependent beta-sheet structure. ACS Nano 6(2):1416–1426. doi:10.1021/nn204214x

    Article  Google Scholar 

  • Slocik JM, Stone MO, Naik RR (2005) Synthesis of gold nanoparticles using multifunctional peptides. Small 1(11):1048–1052

    Article  Google Scholar 

  • Slocik JM, Zabinski JS Jr, Phillips DM, Naik Rajesh R (2008) Colorimentric response of peptide-functionalized gold nanoparticles to metal ions. Small 4:548–551

    Google Scholar 

  • Slocik JM, Govorov AO, Naik RR (2011) Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett 11:701–705. doi:10.1021/nl1038242

    Article  Google Scholar 

  • Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32(2):389–394. doi:10.1021/bi00053a001

    Article  Google Scholar 

  • Swanson SC, Bryand RG (1991) The hydration response of Poly(L-Lysine) dynamics measured by 13C NMR spectroscopy. Biopolymers 31:967–973

    Article  Google Scholar 

  • Tjandra N, Tate S-i, Ono A, Kainosho M, Bax A (2000) The NMR structure of a DNA dodecamer in an aqueous dilute liquid crystalline phase. J Am Chem Soc 122(26):6190–6200

    Google Scholar 

  • Tycko R (2001) Biomolecular solid state NMR: advances in structural methodology and applications to peptide and protein fibrils. Ann Rev Phys Chem 52:575–606

    Article  Google Scholar 

  • Wang SS, Hemphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2:196

    Article  Google Scholar 

  • Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical -shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15 N random coil NMR chemical shifts of the common amino acid. I. investigation of nearest neighbor effects. J Biomol NMR 5:67–81

    Article  Google Scholar 

  • Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Zelakiewicz BS, de Dios AC, Tong YY (2003) 13C NMR spectroscopy of 13C1-labeled octanethiol-protected Au nanoparticles: shifts, relaxations, and particle-size effect. J Am Chem Soc 125(1):18–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Mirau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mirau, P.A. (2014). Interfacial Structure Determination. In: Knecht, M., Walsh, T. (eds) Bio-Inspired Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9446-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9446-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9445-4

  • Online ISBN: 978-1-4614-9446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics