Skip to main content

Structural Perspectives on BCL-2 Family of Proteins

  • Chapter
  • First Online:
Cell Death
  • 2097 Accesses

Abstract

BCL-2 proteins are a family of pro- and anti-apoptotic proteins that regulate a critical step in the mitochondrial apoptotic pathway, the permeabilization of the mitochondrial outer membrane. Because apoptosis and mitochondrial function play an important role in physiology and a number of diseases, intensive investigation over the past two decades has been invested to understand in detail the structure and function of the BCL-2 proteins. Structural biology investigations of BCL-2 proteins have provided tremendous insights into our understanding of their structure–function relationships and models have been proposed to explain how the BCL-2 family members form a network of interactions to control apoptosis signaling. Here, we will review the available structural information of pro- and anti-apoptotic members and the structures of their interaction in homodimerization and heterodimerization. We will discuss the structural insights for each structural domain of BCL-2 proteins that determine their function in the cytosol and the outer mitochondrial membrane. Furthermore, we will discuss the structural details of the interactions between BCL-2 family members and the various structural paradigms that ultimately regulate the activation of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88(3):347–54.

    PubMed  CAS  Google Scholar 

  2. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147(4):742–58.

    PubMed  CAS  Google Scholar 

  3. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.

    PubMed  CAS  Google Scholar 

  4. Barber GN. Host defense, viruses and apoptosis. Cell Death Differ. 2001;8(2):113–26.

    PubMed  CAS  Google Scholar 

  5. Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature. 2006;443(7113):796–802.

    PubMed  CAS  Google Scholar 

  6. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108(2):153–64.

    PubMed  CAS  Google Scholar 

  7. Krammer PH. CD95’s deadly mission in the immune system. Nature. 2000;407(6805):789–95.

    PubMed  CAS  Google Scholar 

  8. Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature. 2000;407(6805):810–6.

    PubMed  CAS  Google Scholar 

  9. Reed JC. Apoptosis-based therapies. Nat Rev Drug Dis. 2002;1(2):111–21.

    CAS  Google Scholar 

  10. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev. 2008;9(1):47–59.

    CAS  Google Scholar 

  11. Green DR. Apoptotic pathways: ten minutes to dead. Cell. 2005;121(5):671–4.

    PubMed  CAS  Google Scholar 

  12. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev. 2010;11(9):621–32.

    CAS  Google Scholar 

  13. Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Dis. 2008;7(12):989–1000.

    CAS  Google Scholar 

  14. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998; 281(5381):1322–6.

    PubMed  CAS  Google Scholar 

  15. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292(5517):727–30.

    PubMed  CAS  Google Scholar 

  16. Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene. 2008;27 Suppl 1:S2–19.

    PubMed  CAS  Google Scholar 

  17. Walensky LD, Gavathiotis E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci. 2011;36(12): 642–52.

    PubMed  CAS  Google Scholar 

  18. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17(3):393–403.

    PubMed  CAS  Google Scholar 

  19. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315(5813):856–9.

    PubMed  CAS  Google Scholar 

  20. Certo M, Moore Vdel G, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9(5):351–65.

    PubMed  CAS  Google Scholar 

  21. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BAK, Green DR, et al. BH3 domains of BH3-only proteins differentially regulate BAX-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell. 2005;17(4):525–35.

    PubMed  CAS  Google Scholar 

  22. Leber B, Lin J, Andrews DW. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis. 2007;12(5):897–911.

    PubMed  CAS  Google Scholar 

  23. Leber B, Lin J, Andrews DW. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene. 2010;29(38):5221–30.

    PubMed  CAS  Google Scholar 

  24. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, et al. X-ray and NMR structure of human BCL-XL, an inhibitor of programmed cell death. Nature. 1996;381(6580):335–41.

    PubMed  CAS  Google Scholar 

  25. Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, et al. Solution structure of the antiapoptotic protein BCL-2. Proc Natl Acad Sci U S A. 2001;98(6):3012–7.

    PubMed  CAS  Google Scholar 

  26. Hinds MG, Lackmann M, Skea GL, Harrison PJ, Huang DC, Day CL. The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J. 2003;22(7):1497–507.

    PubMed  CAS  Google Scholar 

  27. Denisov AY, Madiraju MS, Chen G, Khadir A, Beauparlant P, Attardo G, et al. Solution structure of human BCL-w: modulation of ligand binding by the C-terminal helix. J Biol Chem. 2003;278(23):21124–8.

    PubMed  CAS  Google Scholar 

  28. Day CL, Chen L, Richardson SJ, Harrison PJ, Huang DC, Hinds MG. Solution structure of prosurvival MCL-1 and characterization of its binding by proapoptotic BH3-only ligands. J Biol Chem. 2005;280(6):4738–44.

    PubMed  CAS  Google Scholar 

  29. Herman MD, Nyman T, Welin M, Lehtio L, Flodin S, Tresaugues L, et al. Completing the family portrait of the anti-apoptotic BCL-2 proteins: crystal structure of human BFL-1 in complex with Bim. FEBS Lett. 2008;582(25–26):3590–4.

    PubMed  CAS  Google Scholar 

  30. Rautureau GJ, Day CL, Hinds MG. The structure of Boo/Diva reveals a divergent BCL-2 protein. Proteins. 2010;78(9):2181–6.

    PubMed  CAS  Google Scholar 

  31. Suzuki M, Youle RJ, Tjandra N. Structure of BAX: coregulation of dimer formation and intracellular localization. Cell. 2000;103(4):645–54.

    PubMed  CAS  Google Scholar 

  32. Moldoveanu T, Liu Q, Tocilj A, Watson M, Shore G, Gehring K. The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol Cell. 2006;24(5):677–88.

    PubMed  CAS  Google Scholar 

  33. Chang BS, Minn AJ, Muchmore SW, Fesik SW, Thompson CB. Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J. 1997;16(5):968–77.

    PubMed  CAS  Google Scholar 

  34. Tamura Y, Simizu S, Osada H. The phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase 2A on the mitochondria. FEBS Lett. 2004;569(1–3):249–55.

    PubMed  CAS  Google Scholar 

  35. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell. 2004;116(4):527–40.

    PubMed  CAS  Google Scholar 

  36. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science. 1997;278(5345):1966–8.

    PubMed  CAS  Google Scholar 

  37. Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, et al. Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci U S A. 1998;95(2):554–9.

    PubMed  CAS  Google Scholar 

  38. Lazebnik Y. Why do regulators of apoptosis look like bacterial toxins? Curr Biol. 2001;11(19):R767–8.

    PubMed  CAS  Google Scholar 

  39. Schendel SL, Montal M, Reed JC. Bcl-2 family proteins as ion-channels. Cell Death Differ. 1998;5(5):372–80.

    PubMed  CAS  Google Scholar 

  40. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 2000;345(Pt 2):271–8.

    PubMed  CAS  Google Scholar 

  41. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000;20(3):929–35. PubMed PMID: 10629050.

    PubMed  CAS  Google Scholar 

  42. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 2000;7(12):1166–73.

    PubMed  CAS  Google Scholar 

  43. Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, et al. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J. 2006;25(11):2287–96.

    PubMed  CAS  Google Scholar 

  44. Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol. 2008;6(6):e147.

    PubMed  Google Scholar 

  45. Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell. 2008;135(6):1074–84.

    PubMed  CAS  Google Scholar 

  46. Losonczi JA, Olejniczak ET, Betz SF, Harlan JE, Mack J, Fesik SW. NMR studies of the anti-apoptotic protein Bcl-xL in micelles. Biochemistry. 2000;39(36):11024–33.

    PubMed  CAS  Google Scholar 

  47. O’Neill JW, Manion MK, Maguire B, Hockenbery DM. BCL-XL dimerization by three-dimensional domain swapping. J Mol Biol. 2006;356(2):367–81.

    PubMed  Google Scholar 

  48. Lee EF, Dewson G, Smith BJ, Evangelista M, Pettikiriarachchi A, Dogovski C, et al. Crystal structure of a BCL-W domain-swapped dimer: implications for the function of BCL-2 family proteins. Structure. 2011;19(10):1467–76.

    PubMed  CAS  Google Scholar 

  49. Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, et al. BAX activation is initiated at a novel interaction site. Nature. 2008;455(7216):1076–81.

    PubMed  CAS  Google Scholar 

  50. Hsu YT, Youle RJ. Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem. 1997;272(21):13829–34.

    PubMed  CAS  Google Scholar 

  51. Khaled AR, Kim K, Hofmeister R, Muegge K, Durum SK. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc Natl Acad Sci U S A. 1999;96(25):14476–81.

    PubMed  CAS  Google Scholar 

  52. Tafani M, Cohn JA, Karpinich NO, Rothman RJ, Russo MA, Farber JL. Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha. J Biol Chem. 2002;277(51):49569–76.

    PubMed  CAS  Google Scholar 

  53. Pagliari LJ, Kuwana T, Bonzon C, Newmeyer DD, Tu S, Beere HM, et al. The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc Natl Acad Sci U S A. 2005;102(50):17975–80.

    PubMed  CAS  Google Scholar 

  54. Nechushtan A, Smith CL, Hsu YT, Youle RJ. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J. 1999;18(9):2330–41.

    PubMed  CAS  Google Scholar 

  55. Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem. 2003;278(49):48935–41.

    PubMed  CAS  Google Scholar 

  56. Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell. 2010;40(3):481–92.

    PubMed  CAS  Google Scholar 

  57. Bleicken S, Classen M, Padmavathi PV, Ishikawa T, Zeth K, Steinhoff HJ, et al. Molecular details of Bax activation, oligomerization, and membrane insertion. J Biol Chem. 2010;285(9): 6636–47.

    PubMed  CAS  Google Scholar 

  58. Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P, et al. The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell. 2004;16(5):807–18.

    PubMed  CAS  Google Scholar 

  59. Gallenne T, Gautier F, Oliver L, Hervouet E, Noel B, Hickman JA, et al. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J Cell Biol. 2009;185(2):279–90.

    PubMed  CAS  Google Scholar 

  60. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell. 2013;152(3):519–31.

    PubMed  CAS  Google Scholar 

  61. Wang H, Takemoto C, Akasaka R, Uchikubo-Kamo T, Kishishita S, Murayama K, et al. Novel dimerization mode of the human Bcl-2 family protein Bak, a mitochondrial apoptosis regulator. J Struct Biol. 2009;166(1):32–7.

    PubMed  CAS  Google Scholar 

  62. Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J Cell Biol. 2011;194(1):39–48.

    PubMed  CAS  Google Scholar 

  63. Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, Kuwana T. BH3 domains other than Bim and Bid can directly activate Bax/Bak. J Biol Chem. 2011;286(1):491–501.

    PubMed  CAS  Google Scholar 

  64. Leshchiner ES, Braun CR, Bird GH, Walensky LD. Direct activation of full-length proapoptotic BAK. Proc Natl Acad Sci U S A. 2013;110(11):E986–95.

    PubMed  CAS  Google Scholar 

  65. Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM, et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol. 1999;144(5):903–14.

    PubMed  CAS  Google Scholar 

  66. Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, Kriwacki RW, Green DR. BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol. 2013;20:589–97.

    PubMed  CAS  Google Scholar 

  67. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, et al. Structure of BCL-XL-BAK peptide complex: recognition between regulators of apoptosis. Science. 1997;275(5302):983–6.

    PubMed  CAS  Google Scholar 

  68. Ku B, Liang C, Jung JU, Oh BH. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res. 2011;21(4):627–41.

    PubMed  CAS  Google Scholar 

  69. Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM. Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J Biol Chem. 2011;286(9):7123–31.

    PubMed  CAS  Google Scholar 

  70. Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, et al. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J. 2005;24(12):2096–103.

    PubMed  CAS  Google Scholar 

  71. George NM, Evans JJ, Luo X. A three-helix homo-oligomerization domain containing BH3 and BH1 is responsible for the apoptotic activity of Bax. Genes Dev. 2007;21(15):1937–48.

    PubMed  CAS  Google Scholar 

  72. George NM, Targy N, Evans JJ, Zhang L, Luo X. Bax contains two functional mitochondrial targeting sequences and translocates to mitochondria in a conformational change- and homo-oligomerization-driven process. J Biol Chem. 2010;285(2):1384–92.

    PubMed  CAS  Google Scholar 

  73. Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM, Colman PM, et al. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3: groove interactions. Mol Cell. 2008;30(3):369–80.

    PubMed  CAS  Google Scholar 

  74. Dewson G, Kratina T, Czabotar P, Day CL, Adams JM, Kluck RM. Bak activation for apoptosis involves oligomerization of dimers via their alpha6 helices. Mol Cell. 2009; 36(4):696–703.

    PubMed  CAS  Google Scholar 

  75. Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta. 2011;1813(4):521–31.

    PubMed  CAS  Google Scholar 

  76. Garcia-Saez AJ, Mingarro I, Perez-Paya E, Salgado J. Membrane-insertion fragments of Bcl-xL, Bax, and Bid. Biochemistry. 2004;43(34):10930–43.

    PubMed  CAS  Google Scholar 

  77. Garcia-Saez AJ, Coraiola M, Serra MD, Mingarro I, Muller P, Salgado J. Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores. FEBS J. 2006;273(5):971–81.

    PubMed  CAS  Google Scholar 

  78. Qian S, Wang W, Yang L, Huang HW. Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc Natl Acad Sci U S A. 2008;105(45): 17379–83.

    PubMed  CAS  Google Scholar 

  79. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta. 2011;1813(4):508–20.

    PubMed  CAS  Google Scholar 

  80. Giam M, Huang DC, Bouillet P. BH3-only proteins and their roles in programmed cell death. Oncogene. 2008;27 Suppl 1:S128–36.

    PubMed  CAS  Google Scholar 

  81. Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DC, et al. Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ. 2007;14(1):128–36.

    PubMed  CAS  Google Scholar 

  82. Rautureau GJ, Day CL, Hinds MG. Intrinsically disordered proteins in bcl-2 regulated apoptosis. Int J Mol Sci. 2010;11(4):1808–24.

    PubMed  CAS  Google Scholar 

  83. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell. 1999;96(5):615–24.

    PubMed  CAS  Google Scholar 

  84. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell. 1999;96(5):625–34.

    PubMed  CAS  Google Scholar 

  85. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.

    PubMed  CAS  Google Scholar 

  86. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem. 1999;274(2):1156–63.

    PubMed  CAS  Google Scholar 

  87. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science. 2000;290(5497):1761–5.

    PubMed  CAS  Google Scholar 

  88. Yao Y, Bobkov AA, Plesniak LA, Marassi FM. Mapping the interaction of pro-apoptotic tBID with pro-survival BCL-XL. Biochemistry. 2009;48(36):8704–11.

    PubMed  CAS  Google Scholar 

  89. Gong XM, Choi J, Franzin CM, Zhai D, Reed JC, Marassi FM. Conformation of membrane-associated proapoptotic tBid. J Biol Chem. 2004;279(28):28954–60.

    PubMed  CAS  Google Scholar 

  90. Bleicken S, Garcia-Saez AJ, Conte E, Bordignon E. Dynamic interaction of cBid with detergents, liposomes and mitochondria. PLoS One. 2012;7(4):e35910.

    PubMed  CAS  Google Scholar 

  91. Shroff EH, Snyder CM, Budinger GR, Jain M, Chew TL, Khuon S, et al. BH3 peptides induce mitochondrial fission and cell death independent of BAX/BAK. PLoS One. 2009; 4(5):e5646.

    PubMed  Google Scholar 

  92. Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, et al. Rationale for BCL-XL/BAKd peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 2000;9(12):2528–34. Epub 2001/02/24.

    PubMed  CAS  Google Scholar 

  93. Liu X, Dai S, Zhu Y, Marrack P, Kappler JW. The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity. 2003;19(3):341–52.

    PubMed  CAS  Google Scholar 

  94. Denisov AY, Chen G, Sprules T, Moldoveanu T, Beauparlant P, Gehring K. Structural model of the BCL-w-BID peptide complex and its interactions with phospholipid micelles. Biochemistry. 2006;45(7):2250–6.

    PubMed  CAS  Google Scholar 

  95. Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DC, et al. Structural insights into the degradation of MCL-1 induced by BH3 domains. Proc Natl Acad Sci U S A. 2007;104(15):6217–22.

    PubMed  CAS  Google Scholar 

  96. Smits C, Czabotar PE, Hinds MG, Day CL. Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Structure. 2008;16(5):818–29.

    PubMed  CAS  Google Scholar 

  97. Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with MCL-1. J Mol Biol. 2008;380(5):958–71.

    PubMed  CAS  Google Scholar 

  98. Fire E, Gulla SV, Grant RA, Keating AE. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Protein Sci. 2010;19(3):507–19.

    PubMed  CAS  Google Scholar 

  99. Follis AV, Chipuk JE, Fisher JC, Yun MK, Grace CR, Nourse A, et al. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol. 2013;9(3):163–8.

    PubMed  CAS  Google Scholar 

  100. Lee EF, Sadowsky JD, Smith BJ, Czabotar PE, Peterson-Kaufman KJ, Colman PM, et al. High-resolution structural characterization of a helical alpha/beta-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. Angew Chem Int Ed Engl. 2009;48(24):4318–22.

    PubMed  CAS  Google Scholar 

  101. Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, Colman PM, et al. Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. J Biol Chem. 2009;284(44):30508–17.

    PubMed  CAS  Google Scholar 

  102. Stewart ML, Fire E, Keating AE, Walensky LD. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol. 2010;6(8):595–601.

    PubMed  CAS  Google Scholar 

  103. Gavathiotis E, Reyna DE, Bellairs JA, Leshchiner ES, Walensky LD. Direct and selective small molecule activation of proapoptotic BAX. Nat Chem Biol. 2012;8(7):639–45.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank my laboratory members, past and present collaborators for stimulating discussions, Dr. Thomas Garner for reviewing this chapter, and grant support by the National Institute of Health, National Heart, Lung and Blood Institute (R00HL095929) and National Cancer Institute (P30CA013330-39S1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evripidis Gavathiotis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gavathiotis, E. (2014). Structural Perspectives on BCL-2 Family of Proteins. In: Wu, H. (eds) Cell Death. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9302-0_11

Download citation

Publish with us

Policies and ethics