Skip to main content

Small Molecules Targeting the VHL/Hypoxic Phenotype

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The hypoxic phenotype, characterized by a variety of adaptations that cells make to low oxygen conditions, is a hallmark of solid tumors that serves as both a major challenge and a substantial opportunity in the treatment of cancer. These adaptations influence a wide range of cellular processes, including cell cycle, metabolism, oxygen delivery, proliferation, energy production, differentiation, replication, and sensitivity to growth and death signals. From a clinical perspective, the hypoxic phenotype results in more aggressive tumors that exhibit greater resistance to chemotherapy and radiation therapy and enhanced propensity to metastasize. At the cellular and molecular level, many of the adaptations to hypoxia are mediated by a single transcription factor, the hypoxia-inducible factor (HIF). HIF is predominantly regulated by the von Hippel–Lindau (VHL) tumor suppressor gene. Mutation of VHL results in constitutive activation of HIF and a pseudo-hypoxic phenotype. Here, we review efforts to target either VHL or the hypoxic phenotype to identify pathways and agents as potential cancer therapeutics. Particular focus is given to distinguish between HIF-dependent and HIF-independent therapies.

Raymond J. Louie and Mercè Padró contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC, Levine B (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59:59–65

    Article  PubMed  CAS  Google Scholar 

  • An J, Liu H, Magyar CE, Guo Y, Veena MS, Srivatsan ES, Huang J, Rettig MB (2013) Hyperactivated JNK is a therapeutic target in pVHL-deficient renal cell carcinoma. Cancer Res 73:1374–1385

    Article  PubMed  CAS  Google Scholar 

  • Bellmunt J, Szczylik C, Feingold J, Strahs A, Berkenblit A (2008) Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features. Ann Oncol 19:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Bommi-Reddy A, Almeciga I, Sawyer J, Geisen C, Li W, Harlow E, Kaelin WG Jr, Grueneberg DA (2008) Kinase requirements in human cells: III. Altered kinase requirements in VHL-/- cancer cells detected in a pilot synthetic lethal screen. Proc Natl Acad Sci U S A 105:16484–16489

    Article  PubMed  CAS  Google Scholar 

  • Buckley DL, Gustafson JL, Van Molle I, Roth AG, Tae HS, Gareiss PC, Jorgensen WL, Ciulli A, Crews CM (2012a) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew Chem Int Ed Engl 51:11463–11467

    Article  CAS  Google Scholar 

  • Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012b) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J Am Chem Soc 134:4465–4468

    Article  CAS  Google Scholar 

  • Carew JS, Esquivel JA 2nd, Espitia CM, Schultes CM, Mulbaier M, Lewis JD, Janssen B, Giles FJ, Nawrocki ST (2012) ELR510444 inhibits tumor growth and angiogenesis by abrogating HIF activity and disrupting microtubules in renal cell carcinoma. PLoS One 7:e31120

    Article  PubMed  CAS  Google Scholar 

  • Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26:333–339

    Article  PubMed  CAS  Google Scholar 

  • Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A, Reynolds GE, Chi JT, Wu J, Solow-Cordero DE, Bonnet M, Flanagan JU, Bouley DM, Graves EE, Denny WA, Hay MP, Giaccia AJ (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3:94ra70

    Article  PubMed  CAS  Google Scholar 

  • Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  • Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W (2003) Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 5:64–70

    Article  PubMed  CAS  Google Scholar 

  • Jin S, White E (2007) Role of autophagy in cancer: management of metabolic stress. Autophagy 3:28–31

    PubMed  CAS  Google Scholar 

  • Kaelin WG (2007) Von hippel-lindau disease. Annu Rev Pathol 2:145–173

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG Jr (2008) The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8:865–873

    Article  PubMed  CAS  Google Scholar 

  • Kattan MW, Reuter V, Motzer RJ, Katz J, Russo P (2001) A postoperative prognostic nomogram for renal cell carcinoma. J Urol 166:63–67

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65:9047–9055

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Google Scholar 

  • Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    Article  PubMed  CAS  Google Scholar 

  • Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, Ginsberg MS, Kim ST, Baum CM, DePrimo SE, Li JZ, Bello CL, Theuer CP, George DJ, Rini BI (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24

    Article  PubMed  CAS  Google Scholar 

  • Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grunwald V, Thompson JA, Figlin RA, Hollaender N, Urbanowitz G, Berg WJ, Kay A, Lebwohl D, Ravaud A (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    Article  PubMed  CAS  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427

    Article  PubMed  CAS  Google Scholar 

  • Pajor AM, Randolph KM, Kerner SA, Smith CD (2008) Inhibitor binding in the human renal low- and high-affinity Na + /glucose cotransporters. J Pharmacol Exp Ther 324:985–991

    Article  PubMed  CAS  Google Scholar 

  • Rini BI (2007) Vascular endothelial growth factor-targeted therapy in renal cell carcinoma: current status and future directions. Clin Cancer Res 13:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Risinger AL, Westbrook CD, Encinas A, Mulbaier M, Schultes CM, Wawro S, Lewis JD, Janssen B, Giles FJ, Mooberry SL (2011) ELR510444, a novel microtubule disruptor with multiple mechanisms of action. J Pharmacol Exp Ther 336:652–660

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    Article  PubMed  CAS  Google Scholar 

  • Sutphin PD, Chan DA, Li JM, Turcotte S, Krieg AJ, Giaccia AJ (2007) Targeting the loss of the von Hippel-Lindau tumor suppressor gene in renal cell carcinoma cells. Cancer Res 67:5896–5905

    Article  PubMed  CAS  Google Scholar 

  • Turcotte S, Chan DA, Sutphin PD, Hay MP, Denny WA, Giaccia AJ (2008) A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 14:90–102

    Article  PubMed  CAS  Google Scholar 

  • Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A (2012) Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1alpha protein-protein interface. Chem Biol 19:1300–1312

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Colandrea VJ, Hale JJ (2010) Prolyl hydroxylase domain-containing protein inhibitors as stabilizers of hypoxia-inducible factor: small molecule-based therapeutics for anemia. Expert Opin Ther Pat 20:1219–1245

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise A. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Louie, R., Padró, M., Giaccia, A., Chan, D. (2014). Small Molecules Targeting the VHL/Hypoxic Phenotype. In: Melillo, G. (eds) Hypoxia and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9167-5_11

Download citation

Publish with us

Policies and ethics