Skip to main content

Analysis of Natural Scenes by Echolocation in Bats and Dolphins

  • Chapter
  • First Online:
Biosonar

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 51))

Abstract

Echolocation research has carefully detailed the acoustic cues used by bats and dolphins to localize and discriminate sonar targets; however, there remains an incomplete understanding of the larger problem of auditory scene analysis, namely how echo features from the natural environment are perceptually organized in the animal’s sonar receiver. This chapter reviews research that contributes to our understanding of auditory scene analysis by echolocating bats and dolphins. A review of psychophysical studies of sonar perception brings to light the limitations of understanding auditory scene analysis by echolocation when animals are constrained to a limited repertoire of emitted signals, and listening to a mix of simulated and real echoes that can compromise the perceptual salience of the experimental setting. Adaptive sonar behaviors are an integral component of echolocation systems that would be expected to feed into auditory scene analysis processes, and studies of the echolocating animal’s control over the signals it uses to probe the environment can shed light on sonar scene perception. However, adaptive sonar studies do not provide a direct measure of the animal’s perception of a complex, natural environment. Instead, auditory perception can be inferred only from the animal’s adaptive motor behaviors. Future research on auditory scene analysis by echolocation must embrace the challenge of marrying the advantages of psychophysical and adaptive motor studies, taking creative new approaches to tap into an animal’s perception of its complex, 3D auditory world, while allowing it to engage in its natural behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altes, R. A., Dankiewica, L. A., Moore, P. W., & Helweg, D.A. (2003). Multiecho processing by an echolocating dolphin. Journal of the Acoustical Society of America, 114, 1155–1166.

    Article  Google Scholar 

  • Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.

    Book  Google Scholar 

  • Au, W. W. L. (1994). Comparison of sonar discrimination-dolphin and an artificial neural-network. Journal of the Acoustical Society of America, 95, 2728–2735.

    Article  CAS  PubMed  Google Scholar 

  • Au, W. W. L., & Turl C.W. (1983). Target detection in reverberation by an echolocating Atlantic bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 73, 1676–1681.

    Article  CAS  PubMed  Google Scholar 

  • Au, W. W. L., & Moore, P. W. (1984). Receiving beam patterns and directivity indexes of the Atlantic bottlenose dolphin Tursiops truncates. Journal of the Acoustical Society of America, 75, 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Au, W. W. L., & Pawloski, D. A. (1989). A comparison of signal-detection between an echolocating dolphin and an optimal receiver. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 164, 451–458.

    Article  CAS  Google Scholar 

  • Au, W. W. L., & Pawloski, D. A. (1992). Cylinder wall thickness difference discrimination by an echolocating Altantic bottle-nosed-dolphin. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 170, 41–47.

    Article  CAS  Google Scholar 

  • Au, W. W. L., & Banks, K. (1998). The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. Journal of the Acoustical Society of America, 103, 41–47.

    Article  Google Scholar 

  • Au, W. W. L., Andersen, L. N., Rasmussen, A. R., Roitblat, H. L., & Nachtigall, P. E. (1995). Neural-network modeling of a dolphin’s sonar discrimination capabilities. Journal of the Acoustical Society of America, 98, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Au, W. W. L., Benoit-Bird, K. J., & Kastelein, R. A. (2007). Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises. Journal of the Acoustical Society of America, 121, 3954–3962.

    Article  PubMed  Google Scholar 

  • Barber, J. R., Razak, K. A., & Fuzessery, Z. M. (2003). Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 189, 843–855.

    Article  CAS  Google Scholar 

  • Bates, M. E., Stamper, S. A., & Simmons, J. A. (2008). Jamming avoidance response of big brown bats in target detection. Journal of Experimental Biology, 211, 106–113.

    Article  PubMed  Google Scholar 

  • Bates, M. E., Simmons, J. A., & Zorikov, T. V. (2011). Bats use echo harmonic structure to distinguish their targets from background clutter. Science, 333, 627–630.

    Article  CAS  PubMed  Google Scholar 

  • Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: What is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122, 235–251.

    Article  PubMed Central  PubMed  Google Scholar 

  • Benoit-Bird, K. J., & Au, W. W. L. (2009). Phonation behavior of cooperatively foraging spinner dolphins. Journal of the Acoustical Society of America, 125, 539.

    Article  PubMed  Google Scholar 

  • Branstetter, B. K., Mercado, E., & Au, W. W. L. (2007). Representing multiple discrimination cues in a computational model of the bottlenose dolphin auditory system. Journal of the Acoustical Society of America, 122, 2459–2468.

    Article  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: Bradford Books, MIT Press.

    Google Scholar 

  • Chiu, C., Xian, W., & Moss, C.F. (2008). Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming. Proceedings of the National Academy of Sciences of the USA, 105, 13115–13120.

    Google Scholar 

  • Chiu C., Xian, W., & Moss, C. F. (2009). Adaptive echolocation behavior in bats for the analysis of auditory scenes. Journal of Experimental Biology, 212, 1392–1404.

    Article  PubMed Central  PubMed  Google Scholar 

  • Falk, B., Williams, T., Aytekin, M., & Moss, C. F. (2011). Adaptive behavior for texture discrimination by the free-flying big brown bat, Eptesicus fuscus. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, doi: 10.1007/s00359-010-0621-6.

    Google Scholar 

  • Finneran, J. J. (2013) Dolphin “packet” use during long-range echolocation tasks. Journal of the Acoustical Society of America, 113,1796.

    Article  Google Scholar 

  • Finneran, J. J., Houser, D. S., Moore, P. W., Branstetter, B. K., Trickey, J. S., & Ridgway, S. H. (2010). A method to enable a bottlenose dolphin (Tursiops truncatus) to echolocate while out of water. Journal of the Acoustical Society of America, 128, 1483.

    Article  PubMed  Google Scholar 

  • Ghose, K., & Moss, C. F. (2003). The sonar beam pattern of a flying bat as it tracks tethered insects. Journal of the Acoustical Society of America, 114, 1120–1131.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gillam, E. H., Ulanovsky, N., & McCracken, G. F. (2007). Rapid jamming avoidance in biosonar. Proceedings of the Royal Society of London B: Biological Sciences, 274, 651–660.

    Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press. 2nd ed. (1986). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Griffin, D., Webster, F. A., & Michael, C. R. (1960). The echolocation of flying insects by bats. Animal Behaviour, 8, 141–154.

    Article  Google Scholar 

  • Habersetzer, J., & Vogler, B. (1983). Discrimination of surface-structured targets by the echolocating bat Myotis myotis during flight. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 152(2), 275–282.

    Article  Google Scholar 

  • Harley, H. E., Putman, E. A., & Roitblat, H. L. (2003). Bottlenose dolphins perceive object features through echolocation. Nature, 424 (6949), 667–669.

    Article  CAS  PubMed  Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1989). The sound emission pattern of the echolocating bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 85, 1348–1351.

    Article  Google Scholar 

  • Helweg, D. A., Moore, P. W., Dankiewica, L. A., Zafran, J. M., & Brill, R. L. (2003). Discrimination of complex synthetic echoes by an echolocating bottlenose dolphin. Journal of the Acoustical Society of America, 113(2), 1138–1144.

    Article  PubMed  Google Scholar 

  • Houser, D., Martin, S. W., Bauer, E. J., Phillips, M., Herrin, T., Cross, M., Vidal, A., & Moore, P.W. (2005). Echolocation characteristics of free-swimming bottlenose dolphins during object detection and identification. Journal of the Acoustical Society of America, 117, 2308.

    Article  PubMed  Google Scholar 

  • Johnson, R. A., Moore, P. W. B., Stoermer, M. W., Pawloski, J. L., & Anderson, L. C. (1989). Temporal order discrimination within the dolphin critical interval. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: Processes and performance. New York: Plenum Press.

    Google Scholar 

  • Kalko, E. K. V., Schnitzler, H. U., Kaipf, I., & Grinnell, A. D. (1998). Echolocation and foraging behavior of the lesser bulldog bat, Noctilio albiventris: Preadaptations for piscivory? Behavioral Ecology and Sociobiology, 42(5), 305–319.

    Article  Google Scholar 

  • Kloepper, L., Nachtigall, P. E., & Breese, M. (2010). Change in echolocation signals with hearing loss in a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 128, 2233–2237.

    Article  PubMed  Google Scholar 

  • Lammers, M. O., Au, W. W. L., & Herzing, D. L. (2003). The broadband social acoustic signaling behavior of spinner and spotted dolphins. Journal of the Acoustical Society of America, 114, 1629–1639.

    Article  PubMed  Google Scholar 

  • Long, G. R., & Schnitzler, H. U. (1975). Behavioral audiograms from bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 100(3), 211–219.

    Article  Google Scholar 

  • Martin, S. W., Phillips, M., Bauer, E. J., Moore, P. W., & Houser, D. S. (2005). Instrumenting free-swimming dolphins echolocating in open water. Journal of the Acoustical Society of America, 117(4), 2301–2307.

    Article  PubMed  Google Scholar 

  • Moore, P. W. (1997). Dolphin psychoacoustic. Bioacoustics, 8, 61–78.

    Article  Google Scholar 

  • Moore, P. W. B., & Pawloski, D. A. (1990). Investigations on the control of echolocation pulses in the dolphin. In J. A. Thomas & R. Kastelein (Eds.), Dolphin sensory processes (pp. 305–316). New York: Plenum Press.

    Google Scholar 

  • Moore, P. W., Finneran, J., and Houser, D. S. (2004). Hearing loss and echolocation signal change in dolphins. Journal of the Acoustical Society of America 116, 2503-2503.

    Article  Google Scholar 

  • Moore, P. W., & Finneran, J. J. (2011). Auditory scene analysis in the echolocating dolphin. Journal of the Acoustical Society of America, 129(4), 2469–2469.

    Article  Google Scholar 

  • Moore, P. W., Dankiewicz, L. A., & Houser, D. S. (2008). Beamwidth control and angular target detection in an echolocating bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 124, 3324.

    Article  PubMed  Google Scholar 

  • Moore, P. W. B., Hall, R. W., Friedl, W. A., & Nachtigall, P. E. (1984). The critical interval in dolphin echolocation: What is it? Journal of the Acoustical Society of America, 76, 314–317.

    Article  CAS  PubMed  Google Scholar 

  • Moore, P. W. B., Roitblat, H. L., Penner, R. H., & Nachtigall, P. E. (1991). Recognizing successive dolphin echoes with an integrator gateway network. Neural Networks, 4, 701–709.

    Article  Google Scholar 

  • Moss, C. F., & Zagaeski, M. (1994). Acoustic information available to bats using frequency-modulated sounds for the perception of insect prey. Journal of the Acoustical Society of America, 95, 2745–2756.

    Article  CAS  PubMed  Google Scholar 

  • Moss, C. F., & Schnitzler, H. U. (1995). Behavioral studies of auditory information processing. In A. N. Popper & R. R. Fay (Eds.), Hearing by bats (pp. 87–145). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Moss, C. F., & Surlykke, A. (2001). Auditory scene analysis by echolocation in bats. Journal of the Acoustical Society of America, 110, 2207–2226.

    Article  CAS  PubMed  Google Scholar 

  • Moss, C. F., & Surlykke, A. (2010). Probing the natural scene by echolocation in bats. Frontiers in Behavioral Neuroscience, 4, 1–16.

    Google Scholar 

  • Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive vocal behavior drives perception by echolocation in bats. Current Opinion in Neurobiology, 21, 645–652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nachtigall, P. E., & Moore, P. W. B. (1988). Animal sonar: Processes and performance. New York: Plenum Press.

    Book  Google Scholar 

  • Neuweiler, G. (1989). Foraging ecology and audition in echolocating bats. Trends in Ecology and Evolution, 4, 160–166.

    Google Scholar 

  • Roitblat, H. L., Penner, R. H., & Nachtigall, P. E. (1990). Matching-to-sample by an echolocating dolphin (Tursiops truncatus). Journal of Experimental Psychology: Animal Behavior Processes, 16(1), 85–95.

    CAS  PubMed  Google Scholar 

  • Schnitzler, H. U. (1968). Ultrasonic sounds of horseshoe bats (Chiroptera Rhinolophidae) in different orientation situations. Zeitschrift fur Vergleichende Physiologie, 57, 376–408.

    Article  Google Scholar 

  • Schnitzler, H. U., & Grinnell, A. D. (1977). Directional sensitivity of echolocation in horseshoe bat, Rhinolophus ferrumequinum: 1. Directionality of sound emission. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 116(1), 51–61.

    Article  Google Scholar 

  • Schnitzler, H. U., & Flieger, E. (1983). Detection of oscillating target movements by echolocation in the greater horseshoe bat. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 153(3), 385–391.

    Article  Google Scholar 

  • Schnitzler, H. U., Menne, D., Kober, R., & Heblich, D. (1983). The acoustical image of fluttering insects in echolocating bats. In F. Huber & H. Markl (Eds.), Neuroethology and behavioral physiology: Roots and growing points (pp. 235–250). Berlin, Germany: Springer-Verlag.

    Chapter  Google Scholar 

  • Schnitzler, H. U., Kalko, E. K. V., Kaipf, I., & Grinnell, A. D. (1994). Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. Behavioral Ecology and Sociobiology, 35(5), 327–345.

    Article  Google Scholar 

  • Schnitzler, H. U., Moss, C. F., & Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Research in Ecology and Evolution, 18, 386–394.

    Article  Google Scholar 

  • Simmons, J. A., Lavender, W. A., Lavender, B. A., Doroshow, C. A., Kiefer, S. W., & Livingston, R. (1974). Target structure and echo spectral discrimination by echolocating bats. Science, 186(4169), 1130–1132.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, J. A., Moss, C. F., & Ferragamo, M. (1990). Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A- Sensory Neural and Behavioral Physiology, 166, 449–470.

    CAS  Google Scholar 

  • Starkhammar, S., Dankiewicz-Talmadge, L. A., Houser, D. S., & Moore, P. W. (2010). Frequency-dependent echolocation beam pattern of the bottlenose dolphin. Journal of the Acoustical Society of America, 128, 2484.

    Article  Google Scholar 

  • Stilz, P. (2004). Akustische untersuchungen zur echoortung bei fledermauesen. Tier Phisiologie. University of Tübingen. Retrieved from http://www.biosonarlab.uni-tuebingen.de/public/diss-stilz/diss.pdf

  • Surlykke, A., & Moss, C. F. (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. Journal of the Acoustical Society of America, 108, 2419–2429.

    Article  CAS  PubMed  Google Scholar 

  • Surlykke, A., Ghose, K., & Moss, C. F. (2009). Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. Journal of Experimental Biology, 212, 1011–1020.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ulanovsky, N., Fenton, M. B., Tsoar, A., & Korine, C. (2004). Dynamics of jamming avoidance in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences, 271, 1467–1475.

    Google Scholar 

  • Urick, R. J. (1975). Rician distribution and amplitude fluctuation of transmitted signals in sea. Journal of the Acoustical Society of America, 57, S59–860.

    Article  Google Scholar 

  • Urick, R. J. (1983). Principles of underwater sound. New York: McGraw-Hill.

    Google Scholar 

  • Vanderelst, D., De Mey, F., Peremans, H., Geipel, I., Kalko, E. K. V., & Firzlaff, U. (2010). What noseleaves do for FM bats depends on their degree of sensorial specialization. Public Library of Science: One, 5(8), e11893.

    Google Scholar 

  • Vel’min, V. A., & Dubrovskiy, N. A. (1976). The critical interval of active hearing in dolphins. Soviet Physics: Acoustics, 2, 351–352.

    Google Scholar 

  • von der Emde, G., & Menne, D. (1989). Discrimination of insect wingbeat frequencies by the bat Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 164(5), 663–671.

    Article  Google Scholar 

  • von der Emde, G., & Schnitzler, H. U. (1990). Classification of insects by echolocating greater horseshoe bats. Journal of Comparative Physiology A- Sensory Neural and Behavioral Physiology, 167(3), 423–430.

    Article  Google Scholar 

  • Xitco, M. J., Jr., & Roitblat, H. L. (1996). Object recognition through eavesdropping: Passive echolocation in bottlenose dolphins (Tursiops truncatus), Animal Learning & Behavior 24, 355–365.

    Article  Google Scholar 

  • Yovel, Y., Franz, M. O., Stilz, P., & Schnitzler, H. U. (2008). Plant classification from bat-like echolocation signals. Public Library of Science: Computational Biology, 4, e1000032.

    Google Scholar 

  • Yovel, Y., Stilz, P., Franz, M. O., Boonman, A., & Schnitzler, H. U. (2009). What a plant sounds like: The statistics of vegetation echoes as received by echolocating bats. Public Library of Science: Computational Biology, 5, e1000429.

    Google Scholar 

  • Yovel, Y., Franz, M.O., Stilz, P., & Schnitzler, H. U. (2011). Complex echo classification by echo-locating bats: A review. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 197, 475–490.

    Article  Google Scholar 

Download references

Acknowledgments

National Science Foundation, National Institute of Mental Health, and National Institute on Deafness and Other Communication Disorders provided support for some of the bat echolocation research summarized in this review. Portions of the dolphin research reported here were funded by Office of Naval Research and the Defense Advanced Research Projects Agency. Annemarie Surlykke, Kaushik Ghose, and Ben Falk contributed to the data collection, analysis, and interpretation of several laboratory studies of adaptive echolocation behavior in big brown bats, summarized here. We thank Janna Barcelo and Wei Xian for proofreading the manuscript and Wei Xian for assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia F. Moss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag New York

About this chapter

Cite this chapter

Moss, C.F., Chiu, C., Moore, P.W. (2014). Analysis of Natural Scenes by Echolocation in Bats and Dolphins. In: Surlykke, A., Nachtigall, P., Fay, R., Popper, A. (eds) Biosonar. Springer Handbook of Auditory Research, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9146-0_8

Download citation

Publish with us

Policies and ethics