Skip to main content

Hearing During Echolocation in Whales and Bats

  • Chapter
  • First Online:
Book cover Biosonar

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 51))

Abstract

Echolocation comprises an animal sending out signals and listening for the echoes bouncing off objects in the environment. Given the ease of recording outgoing clicks and cries, more information is known about the outgoing signals than what animals hear of the echoes. Loud outgoing signals produce pronounced echoes but also create problems for hearing when the animal immediately attempts to listen for the quiet returning echoes. Recent work measuring hearing with auditory evoked potentials has allowed a new look at what animals hear while they echolocate. Hearing sensation changes due to middle ear muscle contractions during bat vocalization production protect the auditory system from overstimulation and allow better echo hearing. Whale and dolphin hearing sensation levels also change to maximize the hearing of echoes but may operate differently. A number of mechanisms come into play to maximize hearing during echolocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Au, W. W. L. (1980). Echolocation signals in open waters. In R. G. Busnel & J. F. Fish (Eds.), Animal sonar systems (pp. 251–282). New York: Plenum Press.

    Chapter  Google Scholar 

  • Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.

    Book  Google Scholar 

  • Au, W. W. L., & Benoit-Bird, K. J. (2003). Automatic gain control in the echolocation system of dolphins. Nature, 423, 861–863.

    Article  CAS  PubMed  Google Scholar 

  • Aubauer, R., Au, W. W. L., Nachtigall, P. E., Pawloski, D. A., & DeLong, C. M. (2000). Classification of an electronically generated phantom target by an Atlantic bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 107, 2750–2754.

    Article  CAS  PubMed  Google Scholar 

  • Behrend, O., & Schuller, G. (2000). The central acoustic tract and audio-vocal coupling in the horseshoe bat, Rhinolophus rouxi. European Journal of Neuroscience, 12, 4268–4280.

    Article  CAS  PubMed  Google Scholar 

  • Busnel, R. G., & Fish, J. F. (1980). Animal sonar systems. New York: Plenum Press.

    Book  Google Scholar 

  • Chiu, C. H., Xian, W., & Moss, C. F. (2008). Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming. Proceedings of the National Academy of Sciences of the USA, 105(35), 13116–13121.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiu, C., Xian, W., & Moss, C. F. (2009). Adaptive echolocation behavior in bats for the analysis of auditory scenes. Journal of Experimental Biology, 212(9), 1392–1404.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cook, M. L. H., Varcia, R. A., Goldstein, J. D., McCullock, S. D., Bossart, G. D., Finneran, J. J., Houser, D., & Mann, D. (2006). Beaked whale auditory evoked potential hearing measurements. Journal of Comparative Physiology A, 192, 489–495.

    Article  Google Scholar 

  • Crapse, T. B., & Sommer, M. A. (2009). Corollary discharge across the animal kingdom. Nature Reviews in Neurosciences, 9, 587–600.

    Google Scholar 

  • Dear, S. P., & Suga, N. (1995). Delay-tuned neurons in the midbrain of the big brown bat. Neurophysiology, 73(3), 1084–1100.

    CAS  PubMed  Google Scholar 

  • Dear, S. P., Fritz, J., Haresign, T., Ferragamo, M., & Simmons, J. A. (1993). Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology, 70(5), 1988–2009.

    CAS  PubMed  Google Scholar 

  • Dolphin, W. F., Au, W. W. L., Nachtigall, P. E., & Pawloski J. L. (1995). Modulation rate transfer functions to low frequency carriers by three species of cetaceans. Journal of Comparative Physiology A, 177, 235–245.

    Article  Google Scholar 

  • Dubrovskiy, N. A. (1990). On the two auditory systems in dolphins. In J. Thomas & R. Kastelein (Eds.), Sensory abilities of cetaceans: Laboratory and field evidence (pp. 233–254). New York: Plenum Press.

    Chapter  Google Scholar 

  • Finneran, J. J., Schlundt, C. E., Branstetter, B., & Dear, R. L. (2007). Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials. Journal of the Acoustical Society of America, 122, 1249–1264.

    Article  PubMed  Google Scholar 

  • Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in AI? Hearing Research, 229, 186–203

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaese, B. H., & Ostwald, J. (2001). Anesthesia changes frequency tuning of neurons in the rat primary auditory cortex. Journal of Neurophysiology, 86, 1062–1066.

    CAS  PubMed  Google Scholar 

  • Gillam, E. H., Ulanovsky, N., & McCracken, G. F. (2007). Rapid jamming avoidance in biosonar. Proceedings of the Royal Society B: Biological Sciences, 274, 651–660.

    Google Scholar 

  • Gregg, J. D., Dudzinski, K. M., & Smith H. V. (2007). Do dolphins eavesdrop on the echolocation signals of conspecifics? International Journal of Comparative Psychology, 20, 65–88.

    Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark. New Haven CT: Yale University Press.

    Google Scholar 

  • Henson, O. W. (1965). The activity and function of the middle ear muscles in echolocating bats. Journal of Physiology, 180, 871–887.

    PubMed Central  PubMed  Google Scholar 

  • Henson, O. W., Pollak, G. D., Kobler, J. B., Henson, M. M., & Goldman, L. J. (1982). Cochlear microphonic potentials elicited by biosonar signals in flying bats, Pteronotus p parnellii. Hearing Research, 7, 127–147.

    Article  PubMed  Google Scholar 

  • Herbert, H., Aschoff, A., & Ostwald, J. (1991). Topography of projections from the auditory cortex to the inferior colliculus in the rat. Journal of Comparative Neurology, 304(1), 103–122.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, S., & Firzlaff, U. (2009). Vocalization influences neural processing of acoustic echoes. In 5th Animal Sonar Symposium, September 14 –18, 2009 Doshisha University, Kyoto, Japan.

    Google Scholar 

  • Houser, D. S., & Finneran, J. J. (2006a). A comparison of underwater hearing sensitivity in bottlenose dolphins (Tursiops truncatus) determined by electrophysiological and behavioral methods. Journal of the Acoustical Society of America, 120, 1713–1722.

    Article  PubMed  Google Scholar 

  • Houser, D. S., & Finneran, J. J. (2006b). Variation in the hearing sensitivity of a dolphin population determined through the use of evoked potential audiometry. Journal of the Acoustical Society of America, 120, 4090–4099.

    Article  PubMed  Google Scholar 

  • Huffman, R. F., & Henson, O. W., Jr. (1990). The descending auditory pathway and acousticomotor systems: Connections with the inferior colliculus. Brain Research Review, 15(3), 295–323.

    Article  CAS  Google Scholar 

  • Kamminga, C., & Wiersma, H. (1981). Investigations on cetacean sonar II. Acoustical Similarities and differences in odontocete sonar signals. Aquatic Mammals, 8, 41–62.

    Google Scholar 

  • Kawasaki, M., Margoliash, D., & Suga, N. (1988). Delay-tuned combination-sensitive neurons in the auditory cortex of the vocalizing mustached bat. Journal of Neurophysiology, 59, 623–635.

    CAS  PubMed  Google Scholar 

  • Ketten, D. R. (2000). Cetacean ears. In W. W. L. Au, A. N. Popper, & R. R. Fay (Eds), Hearing by whales and dolphins (pp. 43–108). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Kick, S. A., & Simmons, J. A. (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. Journal of Neuroscience, 4(11), 2725–2737.

    CAS  PubMed  Google Scholar 

  • Li, S., Nachtigall, P. E., & Breese, M. (2011). Dolphin echolocation: Evoked potential responses in an Atlantic bottlenose dolphin (Tursiops truncatus). The Journal of Experimental Biology, 214, 2027–2035.

    Article  PubMed  Google Scholar 

  • Li, S., Nachtigall, P. E., & Breese, M. (2012). Auditory brain stem responses associated with echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) In A. N. Popper & A. Hawkins (Eds.), The effects of noise on aquatic life (pp. 45–47). New York: Springer Science+Business Media.

    Google Scholar 

  • Linnenschmidt, M., Beedholm, K., Wahlberg, M., Hojer-Kristensen, J., & Nachtigall, P. E. (2012). Keeping returns optimal: Gain control exerted through sensitivity adjustments in the harbour porpoise auditory system. Proceedings of the Royal Society of London B: Biological Sciences, 279, 2237–2245.

    Google Scholar 

  • Ma, X., & Suga, N. (2009). Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. Journal of Neuroscience, 29(15), 4888–4896.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madsen, P. T., Wahlberg, M., & Møhl, B. (2002). Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: Implications for echolocation and communication. Behavioral Ecology and Sociobiology, 53, 31–41.

    Article  Google Scholar 

  • Madsen, P. T., Johnson, M., Aguilar de Soto, N., Zimmer, W. M. X., & Tyack, P. (2005). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 208, 181–194.

    Article  CAS  PubMed  Google Scholar 

  • Mittmann, D., & Wenstrup, J. J. (1995). Combination-sensitive neurons in the inferior colliculus. Hearing Research, 90(1–2), 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Møhl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A., & Lund, A. (2003). The monopulsed nature of sperm whale clicks. Journal of the Acoustical Society of America, 114, 1143–1154.

    Article  PubMed  Google Scholar 

  • Mooney, T. A., Nachtigall, P. E., Taylor, K. A., Rasmussen, M., & Miller, L. (2009). Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris). Journal of Comparative Physiology A, 195, 375–384.

    Article  Google Scholar 

  • Moore, P. W. B., Hall, R. W., Friedl, W. A., & Nachtigall, P. E.(1984). The critical interval in dolphin echolocation: What is it? Journal of the Acoustical Society of America, 76, 314–317.

    Article  CAS  PubMed  Google Scholar 

  • Nachtigall, P. E., & Moore, P. W. B. (1988). Animal sonar: Processes and performance. New York: Plenum Press.

    Book  Google Scholar 

  • Nachtigall, P. E., Yuen, M. E., Mooney, T. A., & Taylor, K. A. (2005). Hearing measurements from a stranded infant Risso’s dolphin (Grampus griseus). Journal of Experimental Biology, 208, 4181–4188.

    Article  PubMed  Google Scholar 

  • Nachtigall, P. E., Mooney, T. A., Taylor, K. A., & Yuen, M. L. (2007a). Hearing and auditory evoked potential methods applied to odontocete cetaceans. Aquatic Mammals, 33(1), 6–13.

    Article  Google Scholar 

  • Nachtigall, P. E., Supin, A. Y., Amundin, M., Röken, B., Møller, T., Mooney, T. A., Taylor, K. A., & Yuen, M. E. (2007b). Polar bear (Ursus maritimus) hearing measured with auditory evoked potentials. Journal of Experimental Biology, 210, 1116–1122.

    Article  PubMed  Google Scholar 

  • Nachtigall, P.E. and Supin, A. Ya. (2013) False killer whales reduce their hearing sensitivity if a loud sound is preceded by a warning. Journal of Experimental Biology, 216, 3062–3070

    Google Scholar 

  • Nelson, P. C., Smith, Z. M., & Young, E. D. (2009). Wide-dynamic-range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking. Journal of Neuroscience, 29(8), 2553–2562.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann, I., & Schuller, G. (1991). Spectral and temporal gating mechanisms enhance the clutter rejection in the echolocating bat, Rhinolophus rouxi. Journal of Comparative Physiology A, 169(1), 109–116.

    Article  CAS  Google Scholar 

  • Neuweiler, G., Metzner, W., Heilmann, U., Rübsamen, R., Eckrich, M., & Costa, H. H. (1987). Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Journal of Behavioral Ecology and Sociobiology, 20, 53–67.

    Article  Google Scholar 

  • Olsen, J. F., & Suga, N. (1991). Combination-sensitive neurons in the medial geniculate body of the mustached bat: Encoding of target range information. Journal of Neurophysiology, 65(6), 1275–1296.

    CAS  PubMed  Google Scholar 

  • O’Neill, W. E., & Suga, N. (1982). Encoding of target range and its representation in the auditory cortex of the mustached bat. Journal of Neuroscience, 2(1), 17–31.

    PubMed  Google Scholar 

  • Pacini, A. F., Nachtigall, P. E., Quintos, C., Schofield, D., Look, D. A., Levine, G., & Turner, J. (2011). Audiogram of a stranded Blainville’s beaked whale (Mesoplodon densirostris) measured using auditory evoked potentials. Journal of Experimental Biology, 214, 2409–2415.

    Article  PubMed  Google Scholar 

  • Pecka, M., Zahn, T. P., Saunier-Rebori, B., Siveke, I., Felmy, F., Wiegrebe, L., Klug, A., Pollak, G. D., & Grothe, B. (2007). Inhibiting the inhibition: A neuronal network for sound localization in reverberant environments. Journal of Neuroscience, 27(7), 1782–1790.

    Article  CAS  PubMed  Google Scholar 

  • Peremans, H., & Hallam, J. (1998). The spectrogram correlation and transformation receiver, revisited. Journal of the Acoustical Society of America, 104(2), 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  • Pietsch, G., & Schuller, G. (1987). Auditory self-stimulation by vocalization in the CF-FM bat, Rhinolophus rouxi. Journal of Comparative Physiology A, 160, 635–644.

    Article  Google Scholar 

  • Popov, V. V., Supin, A. Ya., Pletenko, M. G., Tarakanov, M. B., Klishin, V. O., Bulgakavo, T. N., & Rosanova, E. I. (2007). Audiogram variability in normal bottlenose dolphins (Tursiops truncatus). Aquatic Mammals, 33, 14–24.

    Article  Google Scholar 

  • Prechtl, H. (1995). Senso-motorische Wechselwirkung im auditorischen Mittelhirn der Hufeisennasen-Fledermaus, Rhinolophus rouxi. Doctoral dissertation, University of Munich, Germany.

    Google Scholar 

  • Rasmussen, M. H., Miller, L. A., & Au, W. W. L. (2002). Source levels of clicks from free-ranging white beaked dolphins (Lagenorhinchus albirostris Gray 1846) recorded in Icelandic waters. Journal of the Acoustical Society of America, 111, 1122–1125.

    Google Scholar 

  • Ridgway, S. H., & McCormick, J. G. (1967). Anesthetization of porpoises for major surgery. Science, 158, 510–512.

    Article  CAS  PubMed  Google Scholar 

  • Ridgway, S. H., & Carder, D. A. (2001). Assessing hearing and sound production in cetacean not available for behavior audiograms: Experiences with sperm, pygmy sperm, and gray whales. Aquatic Mammals, 27(3), 267–276.

    Google Scholar 

  • Saillant, P. A., Simmons, J. A., Dear, S. P., & McMullen, T. A. (1993). A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: The spectrogram correlation and transformation receiver. Journal of the Acoustical Society of America, 94(5), 2691–2712.

    Article  CAS  PubMed  Google Scholar 

  • Schregardus, D. S., Pieneman, A. W., Ter Maat, A., Jansen, R. F., Brouwer, T. G. F., & Gahr, M. L. (2006). A lightweight telemetry system for recording neuronal activity in freely behaving small animals. Journal of Neuroscience Methods, 155(1), 62–71.

    Article  PubMed  Google Scholar 

  • Schuller, G. (1979). Vocalization influences auditory processing in collicular neurons of the CF-FM bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A, 132, 39–46.

    Google Scholar 

  • Schuller, G., & Pollack, G. (1979). Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats: Evidence for an acoustic fovea. Journal of Comparative Physiology A, 132(1), 47–54.

    Article  Google Scholar 

  • Schuller, G., & Radtke-Schuller, S. (1988). Midbrain areas as candidates for audio-vocal interface in echolocating bats. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: Processes and performance. New York: Plenum Press.

    Google Scholar 

  • Schuller, G., & Radtke-Schuller, S. (1990). Neural control of vocalization in bats: Mapping of brainstem areas with electrical microstimulation eliciting species-specific echolocation calls in the rufous horseshoe bat. Experimental Brain Research , 79(1), 192–206.

    Article  CAS  PubMed  Google Scholar 

  • Schuller, G., O’Neill, W. E. & Radtke-Schuller, S. (1991) Facilitation and delay sensitivity of auditory cortex neurons in CF-FM bats, Rhinolophus rouxi and Pteronotus p. parnellii. European Journal of Neuroscience, 3, 1165–1181.

    Google Scholar 

  • Stimpert, A. K., Wiley, D. N., Au, W. W. L., Johnson, M. P., & Arsenault, R. (2007). Megaclicks: Acoustic click trains and buzzes produced during nighttime foraging of humpback whales (Megaptera novaeangliae). Biological Letters, 3, 467–470.

    Article  Google Scholar 

  • Suga, N. (2008). Role of corticofugal feedback in hearing. Journal of Comparative Physiology A, 194, 169–183.

    Article  Google Scholar 

  • Suga, N., & Schlegel, P. (1972). Neural attenuation of responses to emitted sounds in echolocating bats. Science, 177, 82–84.

    Article  CAS  PubMed  Google Scholar 

  • Suga, N., & Shimozawa, T. (1974). Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science, 183, 1211–1212.

    Article  CAS  PubMed  Google Scholar 

  • Suga, N., & Jen, P. H. S. (1975). Peripheral control of acoustic signals in the auditory system of echolocating bats. Journal of Experimental Biology, 62, 277–311.

    CAS  PubMed  Google Scholar 

  • Supin, A. Ya., & Popov, V. V. (1995a). Envelope-following response and modulation rate transfer function in the dolphin’s auditory system. Hearing Research, 92, 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Supin, A. Ya., & Popov, V. V. (1995b). Temporal resolution in the dolphin’s auditory system revealed by double-click evoked potential study. Journal of the Acoustical Society of America, 97, 2586–2593.

    Article  PubMed  Google Scholar 

  • Supin, A. Ya. , Popov, V. V., & Mass, A. M. (2001). The sensory physiology of aquatic mammals. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Supin, A. Ya., Nachtigall, P. E., & Pawloski, J. L. (2003). Evoked potential recording during echolocation in a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 113(5), 2408–2411.

    Article  PubMed  Google Scholar 

  • Supin, A. Ya., Nachtigall, P. E., Au, W. W. L., & Breese, M. (2004). The interaction of outgoing echolocation pulses and echoes in the false killer whale’s auditory system: Evoked potential study. Journal of the Acoustical Society of America, 115(6), 3218–3225.

    Article  PubMed  Google Scholar 

  • Supin, A. Ya., Nachtigall, P. E., Au, W. W. L., & Breese, M. (2005). Invariance of echo-responses to target strength and distance in an echolocating false killer whale: Evoked potential study. Journal of the Acoustical Society of America, 117(6), 3928–3935.

    Article  PubMed  Google Scholar 

  • Supin, A. Ya., Nachtigall, P. E., & Breese, M. (2006). Source to sensation level ratio of transmitted biosonar pulses in an echolocating false killer whale. Journal of the Acoustical Society of America, 120, 518–526.

    Article  PubMed  Google Scholar 

  • Supin, A. Ya., Nachtigall, P. E., & Breese, M. (2007). Evoked-potential recovery during double click stimulation in a whale: A possibility of biosonar automatic gain control. Journal of the Acoustical Society of America, 121, 618–625.

    Article  PubMed  Google Scholar 

  • Supin, A. Ya., Nachtigall, P. E., & Breese, M. (2008). Hearing sensitivity during target presence and absence while a whale echolocates. Journal of the Acoustical Society of America, 123, 534–541.

    Article  PubMed  Google Scholar 

  • Thomas, J. A., Moss, C. F., & Vater, M. (2004). Echolocation in bats and dolphins. Chicago: University of Chicago Press.

    Google Scholar 

  • Ulanovsky, N., & Moss, C. F. (2007). Hippocampal cellular and network activity in freely moving echolocating bats. Nature Neuroscience, 10, 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky, N., Fenton, M. B., Tsoar, A., & Korine, C. (2004). Dynamics of jamming avoidance in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences, 27, 1467–1475.

    Google Scholar 

  • Wartzog, D., & Ketten, D. R. (1999). Marine mammal sensory systems. In J. E. Reynolds III & S. A. Rommel (Eds.), Biology of marine mammals. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Wever, E. G., & Vernon, J. A. (1961). The protective mechanism of the bat’s ear. Annals of Otology, Rhinology and Laryngology, 70(1), 5–17.

    CAS  Google Scholar 

  • Wiegrebe, L. (2008). An autocorrelation model of bat sonar. Biological Cybernetics, 98, 587–595.

    Article  PubMed  Google Scholar 

  • Yuen, M. E., Nachtigall, P. E., Supin, A. Ya., & Breese, M. (2005). Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 118 (4), 2688–2695.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Nachtigall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag New York

About this chapter

Cite this chapter

Nachtigall, P.E., Schuller, G. (2014). Hearing During Echolocation in Whales and Bats. In: Surlykke, A., Nachtigall, P., Fay, R., Popper, A. (eds) Biosonar. Springer Handbook of Auditory Research, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9146-0_5

Download citation

Publish with us

Policies and ethics