Skip to main content

White Matter Damage in Multiple Sclerosis

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Abstract

Multiple sclerosis (MS) is a chronic, degenerative disease of the central nervous system (CNS), characterized pathologically by focal lesions of demyelination in the white and gray matter of the brain and spinal cord, with features of inflammation, oligodendroglial death, and axonal degeneration. This pathology most commonly affects young adults and leads to significant neurological disability, such as sensory disturbances, lack of motor coordination, and visual impairment. MS is considered to be an autoimmune disease in which immune system recognizes components of the myelin sheath and in consequence, initiates a self-propagating autodestructive process within the CNS. It is widely accepted that both genetic and environmental factors contribute to MS susceptibility, however the etiology of this illness remains unknown. Moreover, it is still unclear what mechanisms underlie the appearance of the hallmark inflammatory demyelinating lesions in the CNS, and their evolution into disseminated sclerotic plaques. This review summarizes current knowledge on the interrelation between the processes of inflammation, neurodegeneration and demyelination that occurs in MS. In addition, we analyze the mechanisms that may be involved in the damage of the different cellular components of white matter. Finally, we discuss recent advances on the neuropathological characterization of MS as well as in imaging the disease, and described the different categories of types of lesions observed in patients with MS. A fine evaluation of lesions with new neuroimaging techniques will be critical for understanding the heterogeneity of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen IV, McQuaid S, Mirakhur M, Nevin G (2001) Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol Sci 22:141–144

    PubMed  CAS  Google Scholar 

  • Alonso A, Hernan MA (2008) Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71:129–135

    PubMed  Google Scholar 

  • Balabanov R, Strand K, Goswami R, McMahon E, Begolka W, Miller SD, Popko B (2007) Interferon-gamma-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis. J Neurosci 27:2013–2024

    PubMed  CAS  Google Scholar 

  • Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    PubMed  Google Scholar 

  • Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, Glogowska M, Case D, Antel JP, Owens GP, Gilden D, Nessler S, Stadelmann C, Hemmer B (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66:617–629

    PubMed  CAS  Google Scholar 

  • Bi W, Zhu L, Wang C, Liang Y, Liu J, Shi Q, Tao E (2011) Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res 1995:12–20

    Google Scholar 

  • Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732

    PubMed  Google Scholar 

  • Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, Adzemovic M, Bauer J, Berger T, Fujihara K, Itoyama Y, Lassmann H (2009) Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66:630–643

    PubMed  CAS  Google Scholar 

  • Brown DA, Sawchenko PE (2007) Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 502:236–260

    PubMed  Google Scholar 

  • Butzkueven H, Zhang JG, Soilu-Hanninen M, Hochrein H, Chionh F, Shipham KA, Emery B, Turnley AM, Petratos S, Ernst M et al (2002) LIF receptor signaling limits immune mediated demyelination by enhancing oligodendrocyte survival. Nat Med 8:613–619

    PubMed  CAS  Google Scholar 

  • Chang A, Tourtelotte WW, Rudick RA, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–200

    PubMed  Google Scholar 

  • Chen L, Brosnan CF (2006) Exacerbation of experimental autoimmune encephalomyelitis in P2X7R−/− mice: evidence for loss of apoptotic activity in lymphocytes. J Immunol 176:3115–3126

    PubMed  CAS  Google Scholar 

  • Comabella M, Craig DW, Morcillo-Suárez C, Río J, Navarro A, Fernández M, Martín R, Montalban X (2009) Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch Neurol 66:972–978

    PubMed  Google Scholar 

  • Cotton F, Weiner HL, Jolesz FA, Guttmann CR (2003) MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 60:640–646

    PubMed  Google Scholar 

  • Craner MJ, Fugger L (2011) Axonal injury in reverse. Nat Med 17:423–425

    PubMed  CAS  Google Scholar 

  • Cuadros MA, Navascués J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56:173–189

    PubMed  CAS  Google Scholar 

  • Cunnea P, Mháille AN, McQuaid S, Farrell M, McMahon J, FitzGerald U (2011) Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis. Mult Scler 17:808–818

    PubMed  Google Scholar 

  • Czeh M, Gressens P, Kaindl AM (2011) The yin and yang of microglia. Dev Neurosci 33:199–201

    PubMed  CAS  Google Scholar 

  • D’Souza SD, Bonetti B, Balasingam V, Cashman NR, Barker PA, Troutt AB, Raine CS, Antel JP (1996) Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184:2361–2370

    PubMed  Google Scholar 

  • Domercq M, Etxebarria E, Pérez-Samartín A, Matute C (2005) Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia 52:36–46

    PubMed  Google Scholar 

  • Domercq M, Sánchez-Gómez MV, Sherwin C, Etxebarria E, Fern R, Matute C (2007) System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J Immunol 178:6549–6556

    PubMed  CAS  Google Scholar 

  • Dutta R, Trapp BD (2011) Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 93:1–12

    PubMed  Google Scholar 

  • Edan G, Leray E (2010) A new treatment era in multiple sclerosis: clinical applications of new concepts. J Neurol Sci 30:170–172

    Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    PubMed  Google Scholar 

  • Filippi M, Rocca MA, Barkhof F, Brück W, Chen JT, Comi G, DeLuca G, DeStefano N, Erickson BJ, Evangelou N, Fazekas F, Geurts JJG, Lucchinetti C, Miller DH, Pelletier D, Popescu BFG, Lassmann H (2012) Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 11:349–359

    PubMed  Google Scholar 

  • Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury brain. Brain 135:886–899

    PubMed  Google Scholar 

  • Fontoura P, Garren H (2010) Molecular basis of multiple sclerosis. In: Martin R, Lutterotti A (eds) Results and problems in cell differentiation, vol 51. Springer, Berlin, pp 259–285

    Google Scholar 

  • Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F (2008) B cells and multiple sclerosis. Lancet Neurol 7:852–858

    PubMed  CAS  Google Scholar 

  • Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    PubMed  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354:942–955

    PubMed  CAS  Google Scholar 

  • Gay F (2007) Activated microglia in primary MS lesions: defenders or aggressors. Int MS J 14:78–83

    PubMed  CAS  Google Scholar 

  • Giovannoni G, Ebers G (2007) Multiple sclerosis: the environment and causation. Curr Opin Neurol 20:261–268

    PubMed  Google Scholar 

  • Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI et al; International Multiple Sclerosis Genetics Consortium (2007) Risk alleles for multiple sclerosis identified by a genome wide study. N Engl J Med 357:851–862

    Google Scholar 

  • Haider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL, Lassmann H (2011) Oxidative damage in multiple sclerosis lesions. Brain 134:1914–1924 He F, Sun YE (2007) Glial cells more than support cells? Int J Biochem Cell Biol 39:661–666

    Google Scholar 

  • Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3:291–301

    PubMed  CAS  Google Scholar 

  • Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753

    PubMed  Google Scholar 

  • Hisahara S, Araki T, Sugiyama F, Yagami K, Suzuki M, Abe K, Yamamura K, Miyazaki J, Momoi T, Saruta T, Bernard CC, Okano H, Miura M (2000) Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J 19:341–348

    PubMed  CAS  Google Scholar 

  • Hochmeister S, Grundtner R, Bauer J, Engelhardt B, Lyck R, Gordon G, Korosec T, Kutzelnigg A, Berger JJ, Bradl M, Bittner RE, Lassmann H (2006) Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol 65:855–865

    PubMed  CAS  Google Scholar 

  • Holley JE, Gveric D, Newcombe J, Cuzner ML, Gutowski NJ (2003) Astrocyte characterization in the multiple sclerosis glial scar. Neuropathol Appl Neurobiol 29:434–444

    PubMed  CAS  Google Scholar 

  • Hövelmeyer N, Hao Z, Kranidioti K, Kassiotis G, Buch T, Frommer F, von Hoch L, Kramer D, Minichiello L, Kollias G, Lassmann H, Waisman A (2005) Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J Immunol 175:5875–5884

    PubMed  Google Scholar 

  • Hu W, Lucchinetti CF (2009) The pathological spectrum of CNS inflammatory demyelinating diseases. Semin Immunopathol 31:439–453

    PubMed  CAS  Google Scholar 

  • Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Annu Rev Med 53:285–302

    PubMed  CAS  Google Scholar 

  • Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113:1477–1489

    PubMed  Google Scholar 

  • Kerschensteiner M, Meinl E, Hohlfeld R (2009) Neuro-immune crosstalk in CNS diseases. Neuroscience 158:1122–1132

    PubMed  CAS  Google Scholar 

  • Koning N, Bö L, Hoek RM, Huitinga I (2007) Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol 62:504–514

    PubMed  CAS  Google Scholar 

  • Krause DL, Müller N (2010) Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int J Alzheimer Dis 2010:9. doi:10.4061/2010/732806

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    PubMed  CAS  Google Scholar 

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    PubMed  Google Scholar 

  • Lassmann H (2007) Cortical, subcortical and spinal alterations in neuroimmunological diseases. J Neurol 254:15–17

    Google Scholar 

  • Lassmann H (2011) The architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathol Appl Neurobiol 37:698–710

    PubMed  CAS  Google Scholar 

  • Lassmann H, VanHorssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8:647–656

    PubMed  CAS  Google Scholar 

  • Lee LS, Xu L, Shin Y, Gardner L, Hartzes A, Dohan FC, Raine C, Homayouni R, Levin MC (2011) A potential link between autoimmunity and neurodegeneration in immune-mediated neurological disease. J Neuroimmunol 235:56–69

    PubMed  CAS  Google Scholar 

  • Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477

    PubMed  CAS  Google Scholar 

  • Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, Edan G (2010) Evidence for a two-stage disability progression in multiple sclerosis. Brain 133:1900–1913

    PubMed  Google Scholar 

  • Lincoln MR, Monpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M, Fereti V, Tienari PJ, Sadovnick AD, Peltonen L, Ebers GC, Hudson TJ (2005) A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 37:1108–1112

    PubMed  CAS  Google Scholar 

  • Locatelli G, Wörtge S, Buch T, Ingold B, Frommer F, Sobottka B, Krüger M, Karram K, Bühlmann C, Bechmann I, Heppner FL, Waisman A, Becher B (2012) Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat Neurosci 15:543–550

    PubMed  CAS  Google Scholar 

  • Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103

    PubMed  CAS  Google Scholar 

  • Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46:907–911

    PubMed  CAS  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (1999) A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. Brain 122:2279–2295

    PubMed  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    PubMed  CAS  Google Scholar 

  • Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M, Oturai A, Ryder LP, Saarela J, Harbo HF, Celius EG, Salter H, Olsson T, Hillert J (2007) Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 39:1108–1113

    PubMed  CAS  Google Scholar 

  • Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735

    PubMed  Google Scholar 

  • Mahad D, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, Lassmann H, Turnbull DM (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174

    PubMed  Google Scholar 

  • Marta CB, Montano MB, Taylor CM, Taylor AL, Bansal R, Pfeiffer SE (2005) Signaling cascades activated upon antibody cross-linking of myelin oligodendrocyte glycoprotein: potential implications for multiple sclerosis. J Biol Chem 280:8985–8993

    PubMed  CAS  Google Scholar 

  • Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR, Al- Hayani A, Davies SN, Rasband MN, Olsson T, Moldenhauer A, Velhin S, Hohlfeld R, Meinl E, Linington C (2007) Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 204:2363–2372

    PubMed  CAS  Google Scholar 

  • Matute C (2011) Glutamate and ATP signalling in white matter pathology. J Anat 219:53–64

    PubMed  CAS  Google Scholar 

  • Matute C, Cavaliere F (2011) Neuroglial interactions mediated by purinergic signalling in the pathophysiology of CNS disorders. Semin Cell Dev Biol 22:252–259

    PubMed  CAS  Google Scholar 

  • Matute C, Pérez-Cerdá F (2005) Multiple sclerosis: novel perspectives on newly forming lesions. Trends Neurosci 28:173–175

    PubMed  CAS  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230

    PubMed  CAS  Google Scholar 

  • Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Rodríguez-Antigüedad A, Sánchez- Gómez MV, Domercq M (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 7:9525–9533

    Google Scholar 

  • Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 373:647–650

    Google Scholar 

  • Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee J-C, Fox R, Chang A, Ransohoff RM, Fisher E (2011) Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol 70:764–773

    PubMed  Google Scholar 

  • Muzzio L, Martino G, Furlan R (2007) Multifaceted aspects of inflammation in multiple sclerosis: the role of microglia. J Neuroimmunol 191:39–44

    Google Scholar 

  • Nakahara J, Aiso S, Suzuki N (2010) Autoimmune versus oligodendrogliopathy: the pathogenesis of multiple sclerosis. Arch Immunol Ther Exp 58:325–333

    CAS  Google Scholar 

  • Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Brück W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–499

    PubMed  CAS  Google Scholar 

  • Ouardouz M, Coderre E, Basak A, Chen A, Zamponi GW, Hameed S, Rehak R, Yin X, Trapp BD, Stys PK (2009a) Glutamate receptors on myelinated spinal cord axons. I. GluR6 kainate receptors. Ann Neurol 65:151–159

    PubMed  CAS  Google Scholar 

  • Ouardouz M, Coderre E, Zamponi GW, Hameed S, Yin X, Trapp BD, Stys PK (2009b) Glutamate receptors on myelinated spinal cord axons. II. AMPA and GluR5 receptors. Ann Neurol 65:160–166

    PubMed  CAS  Google Scholar 

  • Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodriguez-Antiguedad A, Matute C (2008) Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 195:194–198

    PubMed  CAS  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    PubMed  Google Scholar 

  • Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald Criteria. Ann Neurol 69:292–302

    PubMed  Google Scholar 

  • Prineas JW, Parrat JDE (2012) Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol 72:18–31

    PubMed  Google Scholar 

  • Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, Hoffman B, Morgan BP (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–657

    PubMed  CAS  Google Scholar 

  • Prineas JW, McDonald WI, Franklin RJM (2002) Demyelinating diseases. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, vol 2. Arnold, London

    Google Scholar 

  • Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117:971–979

    PubMed  CAS  Google Scholar 

  • Raine CS (1994) The Dale E. McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 36:561–572

    Google Scholar 

  • Ren Z, Wang Y, Tao D, Liebenson D, Liggett T, Goswami R, Clarke R, Stefoski D, Balabanov R (2011) Overexpression of the dominant-negative form of interferon regulatory factor 1 in oligodendrocytes protects against experimental autoimmune encephalomyelitis. J Neurosci 31:8329–8341

    PubMed  CAS  Google Scholar 

  • Rocca MA, Absinta M, Filippi M (2012) The role of advanced magnetic resonance imaging techniques in primary progressive MS. J Neurol 259:611–621

    PubMed  Google Scholar 

  • Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, Mandler RN, Weinshenker BG, Pittock SJ, Wingerchuk DM, Lucchinetti CF (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130:1194–1205

    PubMed  Google Scholar 

  • Rovaris M, Confavreux C, Furlan R, Kappos L, Comi G, Filippi M (2006) Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol 5:343–354

    PubMed  Google Scholar 

  • Sánchez-Gómez MV, Alberdi E, Ibarretxe G, Torre I, Matute C (2003) Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. J Neurosci 23:9519–9528

    PubMed  Google Scholar 

  • Sanders P, De Keyser J (2007) Janus faces of microglia in multiple sclerosis. Brain Res Rev 54:274–285

    PubMed  CAS  Google Scholar 

  • Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A, Daly MJ et al; International Multiple Sclerosis Genetics Consortium (2005) A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 77:454–467

    Google Scholar 

  • Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, Ebers GC (2010) The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain 133:1914–1929

    PubMed  Google Scholar 

  • Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, Misu T, Fujihara K, Bradl M, Lassmann H (2010) Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120:223–236

    PubMed  CAS  Google Scholar 

  • Sharp AJ, Polak PE, Simonini V, Lin SX, Richardson JC, Bongarzone ER, Feinstein DL (2008) P2X7 deficiency suppresses development of experimental autoimmune encephalomyelitis. J Neuroinflammation 5:33. doi:10.1186/1742-2094-5-33

    PubMed  Google Scholar 

  • Siffrin V, Vogt J, Radbruch H, Nitsch R, Zipp F (2010) Multiple sclerosis—candidate mechanisms underlying CNS atrophy. Trends Neurosci 33:202–210

    PubMed  CAS  Google Scholar 

  • Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128:1016–1025

    PubMed  Google Scholar 

  • Stadelmann C, Albert M, Wegner C, Bruck W (2008) Cortical pathology in multiple sclerosis. Curr Opin Neurol 21:229–234

    PubMed  Google Scholar 

  • Stadelmann C, Wegner C, Brück W (2011) Inflammation, demyelination, and degeneration—recent insights from MS pathology. Biochim Biophys Acta 1812:275–282

    PubMed  CAS  Google Scholar 

  • Stirling DP, Stys PK (2010) Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol Med 16:160–170

    PubMed  CAS  Google Scholar 

  • Stys PK (2004) Axonal degeneration in MS: is it time for neuroprotective strategies? Ann Neurol 55:601–603

    PubMed  CAS  Google Scholar 

  • Stys PK, Zamponi GW, van Minnen J, Geurts JJG (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 7:507–514

    Google Scholar 

  • Thompson AJ, Polman CH, Miller DH, McDonald WI, Brochet B, Filipi M, Montalban X, De Sá J (1997) Primary progressive multiple sclerosis. Brain 120:1085–1096

    PubMed  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    PubMed  CAS  Google Scholar 

  • Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280–291

    PubMed  CAS  Google Scholar 

  • Trapp B, Peterson J, Ransohoff R, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    PubMed  CAS  Google Scholar 

  • Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F, Ravid R, Matute C (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21:154–164

    PubMed  CAS  Google Scholar 

  • van Horssen J, Drexhage JA, Flor T, Gerritsen W, van der Valk P, de Vries HE (2010) Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions. Free Radic Biol Med 8:1283–1289

    Google Scholar 

  • van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 1812:141–150

    PubMed  Google Scholar 

  • Veto S, Acs P, Bauer J, Lassmann H, Berente Z, Setalo G Jr, Borgulya G, Sumegi B, Komoly S, Gallyas F Jr, Illes Z (2010) Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 133:822–834

    PubMed  Google Scholar 

  • Vyshkina T, Kalman B (2008) Autoantibodies and neurodegeneration in multiple sclerosis. Lab Invest 88:796–807

    PubMed  CAS  Google Scholar 

  • Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG (2008) Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol 64:239–246

    PubMed  CAS  Google Scholar 

  • Williams A, Piaton G, Lubetzki C (2007) Astrocytes-friends or foes in multiple sclerosis? Glia 55:1300–1312

    PubMed  Google Scholar 

  • Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration. Mitochondrion 10:411–418

    PubMed  CAS  Google Scholar 

  • Young EA, Fowler CD, Kidd GJ, Chang A, Rudick R, Fisher E, Trapp BD (2008) Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions. Ann Neurol 63:428–435

    PubMed  Google Scholar 

  • Zamvil SS, Steinman L (2003) Diverse targets for intervention during inflammatory and neurodegenerative phases of multiple sclerosis. Neuron 38:685–688

    PubMed  CAS  Google Scholar 

  • Zhang X, Haaf M, Todorich B, Grosstephan E, Schieremberg H, Surguladze N, Connor JR (2005) Cytokine toxicity to oligodendrocyte precursors is mediated by iron. Glia 52:199–208

    PubMed  Google Scholar 

  • Zhao C, Fancy SP, Kotter MR, Li WW, Franklin RJ (2005) Mechanisms of CNS remyelination—the key to therapeutic advances. J Neurol Sci 233:87–91

    PubMed  CAS  Google Scholar 

  • Ziabreva I, Campbell G, Rist J, Zambonin J, Rorbach J, Wydro MM, Lassmann H, Franklin RJ, Mahad D (2010) Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia 58:1827–1837

    PubMed  Google Scholar 

  • Zielasek J, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:91–202

    Google Scholar 

  • Zipp F, Atkas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518–527

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by CIBERNED and by grants from the Ministerio de Ciencia e Innovación, Gobierno Vasco, Ikerbasque and the Universidad del País Vasco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Matute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sánchez-Gómez, M.V., Pérez-Cerdá, F., Matute, C. (2014). White Matter Damage in Multiple Sclerosis. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics