Skip to main content

Evolving Mechanosensory Hair Cells to Hearing Organs by Altering Genes and Their Expression: The Molecular and Cellular Basis of Inner Ear and Auditory Organ Evolution and Development

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

  • 2277 Accesses

Abstract

This chapter presents the history of discoveries in hair cell evolution, mechanosensory organ evolution (vestibular ears, lateral line, and paratympanic organ) and evolution of the auditory system and relates them to the molecular basis of their development and evolution. The mechanosensory hair cell, once recognized as a unique vertebrate cell peculiar to the mechanosensory organs of the inner ear and lateral line, can now be developmentally and molecularly linked to nonmechanosensory cells in vertebrates (the electroreceptive “hair cells” of many aquatic vertebrates) and other outgroups (various ciliated cells of diploblasts and triploblasts that share gene expression similarities. This progress in understanding the evolution of the vertebrate mechanosensory cell is put into the context of understanding the evolution of mechanosensory organs. Progress in this area hinges on molecular comparisons of eye and ear development and indicates that both organ types may share a “deep molecular homology” of a super regulator, the Pax genes. Evolutionary transformation of gravistatic sensors into sound pressure receivers happened multiple times in aquatic vertebrates but the transformation of the tetrapod system differs in many structural and molecular aspects from that in bony fish. The current state of our understanding of the molecular basis of this transition is reviewed and put into the historical context of ideas around this subject and their changes over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt, D. (2003). Evolution of eyes and photoreceptor cell types. International Journal of Developmental Biology, 47(7–8), 563–571.

    PubMed  Google Scholar 

  • Bouchard, M., Busslinger, M., Xu, P., De Caprona, D., & Fritzsch, B. (2010). PAX2 and PAX8 cooperate in mouse inner ear morphogenesis and innervation. BMC Developmental Biology, 10, 89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Braun, C. B., & Northcutt, R. G. (1997). The lateral line system of hagfishes (Craniata: Myxinoidea). Acta Zoologica, 3, 247–268.

    Article  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. London: Murray.

    Google Scholar 

  • de Burlet, H. M. (1934). Vergleichende Anatomie des statoakustischen Organs. a) Die innere Ohrsphäre. In L. Bolk, E. Göppert, E. Kallius & W. Lubosch (Eds.), Handbuch der Vergleichenden Anatomie der Wirbeltiere (Vol. 2, pp. 1293–1432). Berlin: Urban and Schwarzenberg.

    Google Scholar 

  • Duncan, J. S., & Fritzsch, B. (2012). Evolution of sound & balance perception: Innovations that aggregate single hair cells into the ear and transform a gravistatic sensor into the organ of Corti. Journal of Anatomy, 295, 1760–1774.

    Google Scholar 

  • Fritzsch, B. (1981). The pattern of lateral-line afferents in urodeles: A horseradish-peroxidase study. Cell and Tissue Research, 218(3), 581–594.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch, B. (1991). Ontogenetic clues to the phylogeny of the visual system. In P. Bagnoli & W. Hodos (Eds.), The changing visual system (pp. 33–49). London: Plenum Press.

    Chapter  Google Scholar 

  • Fritzsch, B. (1992). The water-to-land transition: Evolution of the tetrapod basilar papilla, middle ear and auditory nuclei. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 351–375). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Fritzsch, B. (1999). Hearing in two worlds: Theoretical and realistic adaptive changes of the aquatic and terrestrial ear for sound reception. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians. (pp. 15–42). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Fritzsch, B., & Wahnschaffe, U. (1983). The electroreceptive ampullary organs of urodeles. Cell and Tissue Research, 229(3), 483–503.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch, B., & Wake, M. H. (1988). The inner ear of gymnophione amphibians and its nerve supply: A comparative study of regressive events in a complex sensory system. Zoomorphology, 108, 210–217.

    Article  Google Scholar 

  • Fritzsch, B., & Glover, J. C. (2007). Evolution of the deuterostome central nervous system: An intercalation of developmental patterning processes with cellular specification processes. In J. H. Kaas (Ed.), Evolution of nervous systems (Vol. 2, pp. 1–24). Oxford: Academic Press.

    Chapter  Google Scholar 

  • Fritzsch, B., Eberl, D. F., & Beisel, K. W. (2010). The role of bHLH genes in ear development and evolution: Revisiting a 10-year-old hypothesis. Cell and Molecular Life Sciences, 67(18), 3089–3099.

    Article  CAS  Google Scholar 

  • Fritzsch, B., Pan, N., Jahan, I., Duncan, J. S., Kopecky, B. J., Elliott, K. L., Kersigo, J., & Yang, T. (2013). Evolution and development of the tetrapod auditory system: An organ of Corti-centric perspective. Evolution & Development, 15, 63–79.

    Article  Google Scholar 

  • Gehring, W. J. (2011). Chance and necessity in eye evolution. Genome Biology and Evolution, 3, 1053–1066.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grocott, T., Tambalo, M., & Streit, A. (2012). The peripheral sensory nervous system in the vertebrate head: A gene regulatory perspective. Developmental Biology, 370(1), 3–23.

    Article  PubMed  CAS  Google Scholar 

  • Grothe, B., Carr, E. C., Casseday, J. H., Fritzsch, B., & Köppl, C. (2004). The evolution of central pathways and their neural processing patterns. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system. (pp. 289–359). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Jahan, I., Pan, N., Kersigo, J., Calisto, L. E., Morris, K. A., Kopecky, B., Duncan, J. S., Beisel, K. W., & Fritzsch, B. (2012). Expression of Neurog1 instead of Atoh1 can partially rescue organ of Corti cell survival. PLoS One, 7(1), e30853.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jørgensen, J. M. (1989). Evolution of octavolateralis sensory cells. In S. Coombs, P. Goerner, & H. Muenz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 99–115.). New York: Springer Verlag.

    Google Scholar 

  • Ladich, F., & Popper, A. N. (2004). Parallel evolution of fish hearing organs. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 95–127). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Lamb, T. D. (2013). Evolution of phototransduction, vertebrate photoreceptors and retina. Progress in Retinal and Eye Research, 36, 52–119.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E. R., & Fay, R. R. (2004). Environmental variables and the fundamental nature of hearing. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 27–54). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Manley, G. A., & Clack, J. A. (2004). An outline of evolution of vertebrate hearing organs. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 1–26). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Markl, H. (1974). The perception of gravity and of angular acceleration in invertebrates. In H. H. Kornhuber (Ed.), Handbook of sensory physiology (Vol. VI/1: Vestibular system, pp. 17–74). Berlin: Springer-Verlag.

    Google Scholar 

  • Munz, H., Claas, B., & Fritzsch, B. (1982). Electrophysiological evidence of electroreception in the axolotl Siredon mexicanum. Neuroscience Letters, 28(1), 107–111.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, P., Mak, S.-S., Fritzsch, B., Ladher, R. K., & Baker, C. V. H. (2012). The amniote paratympanic organ develops from a previously undiscovered sensory placode. Nature Communications, 3, 1041.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pan, N., Kopecky, B., Jahan, I., & Fritzsch, B. (2012). Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell and Tissue Research, 349, 415–432.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reichert, C. (1837). Ueber die Visceralbogen der Wierbelthiere im allgemeinen und deren Metamorphose bei den Saeugethieren und Voegeln. Acta Anatomica & Physiologica, 120–222.

    Google Scholar 

  • Retzius, G. (1881). Das Gehörorgan der Wirbeltiere (Vol. I. ). Stockholm: Valin.

    Google Scholar 

  • Senthilan, P. R., Piepenbrock, D., Ovezmyradov, G., Nadrowski, B., Bechstedt, S., Pauls, S., Winkler, M., Mobius, W., Howard, J., & Gopfert, M. C. (2012). Drosophila auditory organ genes and genetic hearing defects. Cell, 150(5), 1042–1054.

    Article  PubMed  CAS  Google Scholar 

  • Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457(7231), 818–823.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, D., Duncan, J., Crapon de Caprona, D., & Fritzsch, B. (2011). Development of the inner ear efferent system. In D. K. Ryugo, R. R. Fay, & A. N. Popper (Eds.), Auditory and vestibular efferents (pp. 187–216.). New York: Springer Science+Business Media.

    Google Scholar 

  • Wagner, A. (2011). The origins of evolutionary innovations. Oxford: Oxford University Press.

    Book  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from National Aeronautics and Space Administration, National Institutes of Health, the German Science Foundation, and funds from Office of the Vice Provost for Research of the University of Iowa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fritzsch, B., de Caprona, MD.C. (2014). Evolving Mechanosensory Hair Cells to Hearing Organs by Altering Genes and Their Expression: The Molecular and Cellular Basis of Inner Ear and Auditory Organ Evolution and Development. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_10

Download citation

Publish with us

Policies and ethics