Skip to main content

Spintronic Memristor as Interface Between DNA and Solid State Devices

  • Chapter
  • First Online:
Memristors and Memristive Systems
  • 3648 Accesses

Abstract

Magnetic sensing is widely used in various modern bio-medical devices since many physiological functions (e.g., nerve impulses) generate electrical currents that create magnetic field [24]. Monitoring such signals by detecting magnetic field is less invasive and more reliable than implanting electrodes to sense the electronic signals. Generally, magnetic sensors can be utilized to detect the changes or disturbances of magnetic field, i.e., the strength and/or direction of magnetic flux. For example, magnetic sensors with high sensitivity have been widely used in heart disease monitor by detecting the bio-magnetic signals from heart (known as magnetocardiography, or MCG) [8]. The magnetic sensors in bio-medical applications are required to detect the low-field signals that are much lower than the Earth’s magnetic field ( < 0. 5 Oe) [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54(13), 9353–9358 (1996)

    Article  Google Scholar 

  2. W.F. Brown, Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)

    Article  Google Scholar 

  3. Y. Cao, T. Sato, M. Orshansky, D. Sylvester, C. Hu, New paradigm of predictive MOSFET and interconnect modeling for early circuit simulation. In IEEE Proceedings of Custom Integrated Circuits Conference (CICC), pp. 201–204, Orlando, FL, 21–24 May 2000

    Google Scholar 

  4. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (2002)

    Article  Google Scholar 

  5. R.A. Duine, A.S. Nunez, A.H. MacDonald, Thermally assisted current-driven domain-wall motion. Phys. Rev. Lett. 98(5), 56605 (2007)

    Google Scholar 

  6. S.J. Han, L. Xu, H. Yu, R.J. Wilson, R.L. White, N. Pourmand, S.X. Wang, CMOS integrated DNA microarray based on GMR sensors. In International Electron Devices Meeting (IEDM), pp. 1–4, San Francisco, CA, 11–13 December 2006

    Google Scholar 

  7. Z. Hu, Q. Li, M. Li, Q. Wang, Y. Zhu, X. Liu, X. Zhao, Y. Liu, S. Dong, Ferroelectric memristor based on pt/bifeo3/nb-doped srtio3 heterostructure. Appl. Phys. Lett. 102(10), 102901–102901 (2013)

    Article  Google Scholar 

  8. S. Lau, R. Eichardt, L. Di Rienzo, J. Haueisen, Tabu search optimization of magnetic sensor systems for magnetocardiography. IEEE Trans. Magn. 44(6), 1442–1445 (2008)

    Article  Google Scholar 

  9. G. Li, V. Joshi, R.L. White, S.X. Wang, J.T. Kemp, C. Webb, R.W. Davis, S. Sun, Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. J. Appl. Phys. 93, 7557 (2003)

    Article  Google Scholar 

  10. G. Li, S. Sun, R.J. Wilson, R.L. White, N. Pourmand, S.X. Wang, Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens. Actuators A Phys. 126(1), 98–106 (2006)

    Article  Google Scholar 

  11. S. Mao, Y. Chen, F. Liu, X. Chen, B. Xu, P. Lu, M. Patwari, H. Xi, C. Chang, B. Miller, et al., Commercial TMR heads for hard disk drives: characterization and extendibility at 300 gbit/in 2. IEEE Trans. Magn. 42(2), 97–102 (2006)

    Article  Google Scholar 

  12. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)

    Article  Google Scholar 

  13. A. Radoi, M. Dragoman, D. Dragoman, Memristor device based on carbon nanotubes decorated with gold nanoislands. Appl. Phys. Lett. 99(9), 093102–093102 (2011)

    Article  Google Scholar 

  14. A. Rhouni, G. Sou, P. Leroy, C. Coillot, A very low 1/f noise and radiation-hardened cmos preamplifier for high sensitivity search coil magnetometers. IEEE Sens. J. 13, 159–166 (2012)

    Article  Google Scholar 

  15. L. Rovati, S. Cattini, Contactless two-axis inclination measurement system using planar flux-gate sensor. IEEE Trans. Instrum. Meas. 59(5), 1284–1293 (2010)

    Article  Google Scholar 

  16. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1–2), L1–L7 (1996)

    Article  Google Scholar 

  17. C.H. Smith, R.W. Schneider, Low Magnetic Field Sensing with GMR Sensors, Part 1: The Theory of Solid-State Magnetic Sensing. Sensors Magazine, 1999

    Google Scholar 

  18. M. Takemoto, T. Akai, Y. Kitamura, Y. Hatsukade, S. Tanaka, Hts rf-squid microscope for metallic contaminant detection. IEEE Trans. Appl. Supercond. 21(3), 432–435 (2011)

    Article  Google Scholar 

  19. G. Tatara, H. Kohno, Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 92(8), 86601 (2004)

    Google Scholar 

  20. S.X. Wang, G. Li, Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE Trans. Magn. 44(7), 1687–1702 (2008)

    Article  Google Scholar 

  21. X. Wang, Y. Chen, Y. Gu, H. Li, Spintronic memristor temperature sensor. IEEE Electron Device Lett. 31(1), 20–22 (2010)

    Article  Google Scholar 

  22. X. Wang, Y. Chen, H. Xi, H. Li, D. Dimitrov, Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 30(3), 294–297 (2009)

    Article  Google Scholar 

  23. X.L. Wang, Q. Shao, C.W. Leung, A. Ruotolo, Non-volatile, reversible switching of the magnetic moment in mn-doped zno films. J. Appl. Phys. 113, 17C301 (2013)

    Google Scholar 

  24. S. Yamada, High-spatial-resolution magnetic-field measurement by giant magnetoresistance sensor—applications to nondestructive evaluation and biomedical engineering. Int. J. Smart Sen. Intell. Syst. 1(1), 160–175 (2008)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by NSF grants CNS-1253424 (CAREER) and ECCS-1202225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiran Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, Y., Li, H., Sun, Z. (2014). Spintronic Memristor as Interface Between DNA and Solid State Devices. In: Tetzlaff, R. (eds) Memristors and Memristive Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9068-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9068-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9067-8

  • Online ISBN: 978-1-4614-9068-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics