Skip to main content

Electromyography (EMG)

  • Chapter
  • First Online:
  • 2568 Accesses

Abstract

The recording of compound muscle action potentials (CMAPs) in response to spontaneous or electrically stimulated cranial nerve, spinal nerve, or ventral root activation is known as intraoperative electromyography (EMG) [1]. EMG is one of the most useful modalities for intraoperative monitoring (IOM). It is one of several methods of monitoring neurologic function, including the electroencephalogram, sensory evoked potentials, motor evoked potentials, transcranial Doppler ultrasound, cerebral oximetry, and jugular oxygen saturation [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koht A, Sloan TB, Toleikis JR. Monitoring the nervous system for anesthesiologists and other health care professionals. New York: Springer; 2011.

    Google Scholar 

  2. Miller RD. Miller’s anesthesia. 7th ed. Philadelphia, PA: Churchill Livingstone; 2010.

    Google Scholar 

  3. Hilger JA. Facial nerve stimulator. Trans Am Acad Ophthalmol Otolaryngol. 1964;68:74–6. PubMed PMID: 14116425.

    PubMed  CAS  Google Scholar 

  4. Rand RW, Kurze TL. Facial nerve preservation by posterior fossa transmeatal microdissection in total removal of acoustic tumours. J Neurol Neurosurg Psychiatry. 1965;28:311–6. PubMed PMID: 14338120, Pubmed Central PMCID: 495910.

    Article  PubMed  CAS  Google Scholar 

  5. Al-Mefty O, Holoubi A, Rifai A, Fox JL. Microsurgical removal of suprasellar meningiomas. Neurosurgery. 1985;16(3):364–72. PubMed PMID: 3982616.

    Article  PubMed  CAS  Google Scholar 

  6. Møller AR. Intraoperative neurophysiological monitoring. New York: Springer; 2010.

    Google Scholar 

  7. Calancie B, Lebwohl N, Madsen P, Klose KJ. Intraoperative evoked EMG monitoring in an animal model. A new technique for evaluating pedicle screw placement. Spine (Phila Pa 1976). 1992;17(10):1229–35. PubMed PMID: 1440014.

    Article  CAS  Google Scholar 

  8. Calancie B, Madsen P, Lebwohl N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine (Phila Pa 1976). 1994;19(24):2780–6. PubMed PMID: 7899979.

    Article  CAS  Google Scholar 

  9. Husain AM. A practical approach to neurophysiologic intraoperative monitoring [electronic resource]. New York: Demos; 2008.

    Google Scholar 

  10. Balzer JR, Rose RD, Welch WC, Sclabassi RJ. Simultaneous somatosensory evoked potential and electromyographic recordings during lumbosacral decompression and instrumentation. Neurosurgery. 1998;42(6):1318–24. Discussion 24–5, PubMed PMID: 9632191.

    Article  PubMed  CAS  Google Scholar 

  11. Krassioukov AV, Sarjeant R, Arkia H, Fehlings MG. Multimodality intraoperative monitoring during complex lumbosacral procedures: indications, techniques, and long-term follow-up review of 61 consecutive cases. J Neurosurg Spine. 2004;1(3):243–53. PubMed PMID: 15478361.

    Article  PubMed  Google Scholar 

  12. Nichols GS, Manafov E. Utility of electromyography for nerve root monitoring during spinal surgery. J Clin Neurophysiol. 2012;29(2):140–8. PubMed PMID: 22469677.

    Article  PubMed  Google Scholar 

  13. Santiago-Perez S, Nevado-Estevez R, Aguirre-Arribas J, Perez-Conde MC. Neurophysiological monitoring of lumbosacral spinal roots during spinal surgery: continuous intraoperative electromyography (EMG). Electromyogr Clin Neurophysiol. 2007;47(7–8):361–7. PubMed PMID: 18051630.

    PubMed  CAS  Google Scholar 

  14. Welch WC, Rose RD, Balzer JR, Jacobs GB. Evaluation with evoked and spontaneous electromyography during lumbar instrumentation: a prospective study. J Neurosurg. 1997;87(3):397–402. PubMed PMID: 9285605.

    Article  PubMed  CAS  Google Scholar 

  15. Prass RL, Luders H. Acoustic (loudspeaker) facial electromyographic monitoring: Part 1. Evoked electromyographic activity during acoustic neuroma resection. Neurosurgery. 1986;19(3):392–400. PubMed PMID: 3762886.

    Article  PubMed  CAS  Google Scholar 

  16. Holland NR, Lukaczyk TA, Riley 3rd LH, Kostuik JP. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine (Phila Pa 1976). 1998;23(2):224–7. PubMed PMID: 9474730.

    Article  CAS  Google Scholar 

  17. Mandpe AH, Mikulec A, Jackler RK, Pitts LH, Yingling CD. Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection. Am J Otol. 1998;19(1):112–7. PubMed PMID: 9455959.

    PubMed  CAS  Google Scholar 

  18. Neff BA, Ting J, Dickinson SL, Welling DB. Facial nerve monitoring parameters as a predictor of postoperative facial nerve outcomes after vestibular schwannoma resection. Otol Neurotol. 2005;26(4):728–32. PubMed PMID: 16015176.

    Article  PubMed  Google Scholar 

  19. Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD. Free hand pedicle screw placement in the thoracic spine: is it safe? Spine (Phila Pa 1976). 2004;29(3):333–42. Discussion 42, PubMed PMID: 14752359.

    Article  Google Scholar 

  20. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235–40. PubMed PMID: 10905443, Pubmed Central PMCID: 3611394.

    Article  PubMed  CAS  Google Scholar 

  21. Alemo S, Sayadipour A. Role of intraoperative neurophysiologic monitoring in lumbosacral spine fusion and instrumentation: a retrospective study. World Neurosurg. 2010;73(1):72–6. Discussion e7, PubMed PMID: 20452872.

    Article  PubMed  Google Scholar 

  22. Darden 2nd BV, Wood KE, Hatley MK, Owen JH, Kostuik J. Evaluation of pedicle screw insertion monitored by intraoperative evoked electromyography. J Spinal Disord. 1996;9(1):8–16. PubMed PMID: 8727451.

    Article  PubMed  Google Scholar 

  23. Djurasovic M, Dimar 2nd JR, Glassman SD, Edmonds HL, Carreon LY. A prospective analysis of intraoperative electromyographic monitoring of posterior cervical screw fixation. J Spinal Disord Tech. 2005;18(6):515–8. PubMed PMID: 16306841, Epub 2005/11/25.

    Article  PubMed  Google Scholar 

  24. Holdefer RN, Heffez DS, Cohen BA. Utility of evoked EMG monitoring to improve bone screw placements in the cervical spine. J Spinal Disord Tech. 2013;26(5):E163–9. PubMed PMID: 23429315.

    Article  PubMed  Google Scholar 

  25. Parker SL, Amin AG, Farber SH, McGirt MJ, Sciubba DM, Wolinsky JP, et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine. 2011;15(2):130–5. PubMed PMID: 21529126.

    Article  PubMed  Google Scholar 

  26. Patil S, Lindley EM, Burger EL, Yoshihara H, Patel VV. Pedicle screw placement with O-arm and stealth navigation. Orthopedics. 2012;35(1):e61–5. PubMed PMID: 22229616.

    Article  PubMed  Google Scholar 

  27. Larson AN, Santos ER, Polly Jr DW, Ledonio CG, Sembrano JN, Mielke CH, et al. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine (Phila Pa 1976). 2012;37(3):E188–94. PubMed PMID: 21738101.

    Article  Google Scholar 

  28. Kim YJ, Lenke LG, Cheh G, Riew KD. Evaluation of pedicle screw placement in the deformed spine using intraoperative plain radiographs: a comparison with computerized tomography. Spine (Phila Pa 1976). 2005;30(18):2084–8. PubMed PMID: 16166900.

    Article  Google Scholar 

  29. Bindal RK, Ghosh S. Intraoperative electromyography monitoring in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2007;6(2):126–32. PubMed PMID: 17330579.

    Article  PubMed  Google Scholar 

  30. de Blas G, Barrios C, Regidor I, Montes E, Burgos J, Piza-Vallespir G, et al. Safe pedicle screw placement in thoracic scoliotic curves using t-EMG: stimulation threshold variability at concavity and convexity in apex segments. Spine (Phila Pa 1976). 2012;37(6):E387–95. PubMed PMID: 22024903.

    Article  Google Scholar 

  31. Min WK, Lee HJ, Jeong WJ, Oh CW, Bae JS, Cho HS, et al. Reliability of triggered EMG for prediction of safety during pedicle screw placement in adolescent idiopathic scoliosis surgery. Asian Spine J. 2011;5(1):51–8. PubMed PMID: 21386946, Pubmed Central PMCID: 3047898.

    Article  PubMed  Google Scholar 

  32. Raynor BL, Lenke LG, Bridwell KH, Taylor BA, Padberg AM. Correlation between low triggered electromyographic thresholds and lumbar pedicle screw malposition: analysis of 4857 screws. Spine (Phila Pa 1976). 2007;32(24):2673–8. PubMed PMID: 18007243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Francis Davis Ph.D., CNIM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mancuso, K., Prabhakar, A., Lissauer, J., Kaye, A.D., Davis, S.F. (2014). Electromyography (EMG). In: Kaye, A., Davis, S. (eds) Principles of Neurophysiological Assessment, Mapping, and Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8942-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8942-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8941-2

  • Online ISBN: 978-1-4614-8942-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics