Skip to main content

Monitoring Posterior Fossa Craniotomies

  • Chapter
  • First Online:
  • 2468 Accesses

Abstract

The base of the skull is divided into three cranial fossae: posterior, middle, and anterior (Fig. 14.1). The posterior fossa is the deepest and largest and is enclosed by the occipital bone. Within the posterior fossa are the brainstem and cerebellum. The brainstem—consisting of the midbrain (mesencephalon), pons, and medulla—contains the nuclei of cranial nerves (CN) III–XII and is responsible for vital autonomic nervous system function. The brainstem also contains afferent and efferent fiber tracts that connect the brain with the rest of the body. The cerebellum is responsible for movement, balance, and coordination. Due to the complex anatomy and close proximity of these vital structures to each other, the use of intraoperative neuromonitoring (IOM) during posterior skull base surgery can aid the surgeon in identifying neural structures at risk as well as verifying neural integrity once the decompression is complete. This chapter focuses on surgeries for microvascular decompression (MVD), vestibular schwannoma, and Chiari malformation and the modalities used to preserve the neurological function of cranial nerves and brainstem structures during these types of surgeries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O’Donovan CA, Kuhn S. Cerebellopontine angle surgery: microvascular decompression. In: Husain AM, editor. A practical approach to neurophysiologic intraoperative monitoring. New York: Demos; 2008. p. 195–211.

    Google Scholar 

  2. Thirumala PD, Shah AC, et al. Microvascular decompression for hemifacial spasm: evaluating outcome prognosticators including the value of intraoperative lateral spread response monitoring and clinical characteristics in 293 patients. J Clin Neurophysiol. 2011;28(1):56–66.

    Article  PubMed  Google Scholar 

  3. Ying T, Li S, et al. The value of abnormal muscle response monitoring during microvascular decompression surgery for hemifacial spasm. Int J Surg. 2011;9:347–51.

    Article  PubMed  Google Scholar 

  4. Møller AR. Intraoperative neurophysiological monitoring. 2nd ed. Totowa, NJ: Humana; 2006.

    Google Scholar 

  5. Møller AR, Jannetta PJ. Monitoring facial EMG responses during microvascular decompression operations for hemifacial spasm. J Neurosurg. 1987;66:681–5.

    Article  PubMed  Google Scholar 

  6. Roland JT, Fishman AJ, et al. Cranial nerve preservation in surgery for large acoustic neuromas. Skull Base. 2004;14:85–91.

    Article  PubMed  Google Scholar 

  7. El Kashlan HK, Zeitoun H, et al. Recurrence of acoustic neuroma after incomplete resection. Am J Otol. 2000;21:389–92.

    Article  PubMed  Google Scholar 

  8. Lee SH, Willcox TO, et al. Current results of the surgical management of acoustic neuroma. Skull Base. 2002;12:189–95.

    Article  PubMed  Google Scholar 

  9. Goldbrunner RH, Schlake H, et al. Quantitative parameters of intraoperative electromyography predict facial nerve outcomes for vestibular schwannoma surgery. Neurosurgery. 2000;46(5):1140–6.

    Article  PubMed  CAS  Google Scholar 

  10. Neff BA, Ting J, et al. Facial nerve monitoring parameters as a predictor of postoperative facial nerve outcomes after vestibular schwannoma resection. Otol Neurotol. 2005;26(4):728–32.

    Article  PubMed  Google Scholar 

  11. Mandpe AH, Mikulec A, et al. Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection. Am J Otol. 1998;19(1):112–7.

    PubMed  CAS  Google Scholar 

  12. Angelo R, Møller AR. Contralateral evoked brainstem auditory potentials as an indicator of intraoperative brainstem manipulation in cerebellopontine angle tumors. Neurol Res. 1996;18:528–40.

    PubMed  CAS  Google Scholar 

  13. Stevenson K. Chiari type II malformation: past, present and future. Neurosurg Focus. 2004;16(2):E5.

    Article  PubMed  Google Scholar 

  14. Milhorat TH, Chou M, et al. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 1999;44(5):1005–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Francis Davis Ph.D., CNIM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birkholz, D., Davis, S.F. (2014). Monitoring Posterior Fossa Craniotomies. In: Kaye, A., Davis, S. (eds) Principles of Neurophysiological Assessment, Mapping, and Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8942-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8942-9_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8941-2

  • Online ISBN: 978-1-4614-8942-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics