Skip to main content

Intraoperative Monitoring for Surgery of the Spinal Cord and Cauda Equina

  • Chapter
  • First Online:
Principles of Neurophysiological Assessment, Mapping, and Monitoring

Abstract

The spinal cord is the conduit by which sensory input and motor output influence human behavior. Although the function of the spinal cord mostly involves moving information to and from the brain, there are several important functions that are regulated at the level of the cord and even more functions that local spinal cord circuits influence or modulate. Surgery of the spinal cord or cauda equina carries with it the risk of serious complications, including paralysis and other morbidities that have the potential to negatively impact the quality of life of a patient forever [1, 2]. Nevertheless, there are certain pathologies that have no other treatment option than surgical intervention [3–5]. Intraoperative monitoring and mapping of the spinal cord and cauda equina are helpful for protecting spinal cord function during surgery as well as providing the surgeon with real-time functional information that may allow more aggressive and complete treatment of the pathology [6–8]. This chapter will discuss spinal cord monitoring for surgery to remove intramedullary spinal cord tumors and for spinal cord untethering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cristante L, Herrmann HD. Surgical management of intramedullary spinal cord tumors: functional outcome and sources of morbidity. Neurosurgery. 1994;35(1):69–74. PubMed PMID: 7936155, discussion 74−6.

    Article  PubMed  CAS  Google Scholar 

  2. van Leeuwen R, Notermans NC, Vandertop WP. Surgery in adults with tethered cord syndrome: outcome study with independent clinical review. J Neurosurg. 2001;94(2 Suppl):205–9. PubMed PMID: 11302621.

    PubMed  Google Scholar 

  3. van der Meulen WD, Hoving EW, Staal-Schreinemacher A, Begeer JH. Analysis of different treatment modalities of tethered cord syndrome. Childs Nerv Syst. 2002;18(9–10):513–7. PubMed PMID: 12382177.

    Article  PubMed  Google Scholar 

  4. Manzano G, Green BA, Vanni S, Levi AD. Contemporary management of adult intramedullary spinal tumors-pathology and neurological outcomes related to surgical resection. Spinal Cord. 2008;46(8):540–6. PubMed PMID: 18542096.

    Article  PubMed  CAS  Google Scholar 

  5. Hejazi N, Hassler W. Microsurgical treatment of intramedullary spinal cord tumors. Neurol Med Chir (Tokyo). 1998;38(5):266–71. PubMed PMID: 9640961, discussion 71–3.

    Article  CAS  Google Scholar 

  6. Herdmann J, Deletis V, Edmonds Jr HL, Morota N. Spinal cord and nerve root monitoring in spine surgery and related procedures. Spine (Phila Pa 1976). 1996;21(7):879–85. PubMed PMID: 8779023.

    Article  CAS  Google Scholar 

  7. Kothbauer K, Deletis V, Epstein FJ. Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg. 1997;26(5):247–54. PubMed PMID: 9440494.

    Article  PubMed  CAS  Google Scholar 

  8. Kothbauer KF, Novak K. Intraoperative monitoring for tethered cord surgery: an update. Neurosurg Focus. 2004;16(2):E8. PubMed PMID: 15209491.

    Article  PubMed  Google Scholar 

  9. Fischer G, Brotchi J, Balériaux D. Intramedullary spinal cord tumors. Stuttgart: Thieme; 1996. p. 60–84.

    Google Scholar 

  10. Wang AC, Than KD, Etame AB, La Marca F, Park P. Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus. 2009;27(4):E7. PubMed PMID: 19795956.

    Article  PubMed  Google Scholar 

  11. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43. PubMed PMID: 12477988.

    Article  PubMed  Google Scholar 

  12. Adams DC, Emerson RG, Heyer EJ, McCormick PC, Carmel PW, Stein BM, et al. Monitoring of intraoperative motor-evoked potentials under conditions of controlled neuromuscular blockade. Anesth Analg. 1993;77(5):913–8. PubMed PMID: 8214726.

    Article  PubMed  CAS  Google Scholar 

  13. Davis SF, Kalarickal P, Strickland T. A report of two cases of lip and tongue bite injury associated with transcranial motor evoked potentials. Am J Electroneurodiagnostic Technol. 2010;50(4):313–20. PubMed PMID: 21313791.

    PubMed  Google Scholar 

  14. Hoshimaru M, Koyama T, Hashimoto N, Kikuchi H. Results of microsurgical treatment for intramedullary spinal cord ependymomas: analysis of 36 cases. Neurosurgery. 1999;44(2):264–9. PubMed PMID: 9932879.

    Article  PubMed  CAS  Google Scholar 

  15. Whittle IR, Johnston IH, Besser M. Recording of spinal somatosensory evoked potentials for intraoperative spinal cord monitoring. J Neurosurg. 1986;64(4):601–12. PubMed PMID: 3950743.

    Article  PubMed  CAS  Google Scholar 

  16. Pechstein U, Cedzich C, Nadstawek J, Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery. 1996;39(2):335–43. PubMed PMID: 8832671, discussion 43–4.

    Article  PubMed  CAS  Google Scholar 

  17. Levy WJ, York DH, McCaffrey M, Tanzer F. Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery. 1984;15(3):287–302. PubMed PMID: 6090972.

    Article  PubMed  CAS  Google Scholar 

  18. Katayama Y, Tsubokawa T, Maejima S, Hirayama T, Yamamoto T. Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anaesthesia. J Neurol Neurosurg Psychiatry. 1988;51(1):50–9. PubMed PMID: 2832547, Pubmed Central PMCID: 1032713.

    Article  PubMed  CAS  Google Scholar 

  19. Sala F, Bricolo A, Faccioli F, Lanteri P, Gerosa M. Surgery for intramedullary spinal cord tumors: the role of intraoperative (neurophysiological) monitoring. Eur Spine J. 2007;16 Suppl 2:S130–9. PubMed PMID: 17653776, Pubmed Central PMCID: 2072903.

    Article  PubMed  Google Scholar 

  20. Yamamoto T, Katayama Y, Nagaoka T, Kobayashi K, Fukaya C. Intraoperative monitoring of the corticospinal motor evoked potential (D-wave): clinical index for postoperative motor function and functional recovery. Neurol Med Chir (Tokyo). 2004;44(4):170–80. PubMed PMID: 15185755, discussion 81–2.

    Article  PubMed  Google Scholar 

  21. Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus. 1998;4(5):e1. PubMed PMID: 17154450.

    Article  PubMed  CAS  Google Scholar 

  22. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58(6):1129–43. PubMed PMID: 16723892, discussion 1129−43.

    Article  PubMed  Google Scholar 

  23. Yamada S. Tethered cord syndrome in children and adults. Stuttgart: Thieme; 2010.

    Google Scholar 

  24. Kang JK, Kim MC, Kim DS, Song JU. Effects of tethering on regional spinal cord blood flow and sensory-evoked potentials in growing cats. Childs Nerv Syst. 1987;3(1):35–9. PubMed PMID: 3594467.

    Article  PubMed  CAS  Google Scholar 

  25. Iskandar BJ, Fulmer BB, Hadley MN, Oakes WJ. Congenital tethered spinal cord syndrome in adults. Neurosurg Focus. 2001;10(1):e7. PubMed PMID: 16749759.

    Article  PubMed  CAS  Google Scholar 

  26. Hoffman HJ, Hendrick EB, Humphreys RP. The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Child’s brain. 1976;2(3):145–55. PubMed PMID: 786565.

    PubMed  CAS  Google Scholar 

  27. Paradiso G, Lee GY, Sarjeant R, Hoang L, Massicotte EM, Fehlings MG. Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with long-term follow-up. Spine (Phila Pa 1976). 2006;31(18):2095–102. PubMed PMID: 16915095.

    Article  Google Scholar 

  28. Paradiso G, Lee GY, Sarjeant R, Fehlings MG. Multi-modality neurophysiological monitoring during surgery for adult tethered cord syndrome. J Clin Neurosci. 2005;12(8):934–6. PubMed PMID: 16242934.

    Article  PubMed  Google Scholar 

  29. Quinones-Hinojosa A, Gadkary CA, Gulati M, von Koch CS, Lyon R, Weinstein PR, et al. Neurophysiological monitoring for safe surgical tethered cord syndrome release in adults. Surg Neurol. 2004;62(2):127–33. PubMed PMID: 15261505, discussion 33–5.

    Article  PubMed  Google Scholar 

  30. Legatt AD, Schroeder CE, Gill B, Goodrich JT. Electrical stimulation and multichannel EMG recording for identification of functional neural tissue during cauda equina surgery. Childs Nerv Syst. 1992;8(4):185–9. PubMed PMID: 1394248.

    Article  PubMed  CAS  Google Scholar 

  31. James HE, Mulcahy JJ, Walsh JW, Kaplan GW. Use of anal sphincter electromyography during operations on the conus medullaris and sacral nerve roots. Neurosurgery. 1979;4(6):521–3. PubMed PMID: 384288.

    Article  PubMed  CAS  Google Scholar 

  32. Nagle KJ, Emerson RG, Adams DC, Heyer EJ, Roye DP, Schwab FJ, et al. Intraoperative monitoring of motor evoked potentials: a review of 116 cases. Neurology. 1996;47(4):999–1004. PubMed PMID: 8857734.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Francis Davis Ph.D., CNIM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, S.F., Higgins, J. (2014). Intraoperative Monitoring for Surgery of the Spinal Cord and Cauda Equina. In: Kaye, A., Davis, S. (eds) Principles of Neurophysiological Assessment, Mapping, and Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8942-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8942-9_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8941-2

  • Online ISBN: 978-1-4614-8942-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics