Skip to main content

Frequency Dependent IQ Imbalance Estimation and Compensation

  • Chapter
  • First Online:
In-Phase and Quadrature Imbalance

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 997 Accesses

Abstract

For wideband systems, IQ imbalance values may be frequency selective. To do estimation and compensation, the frequency selectivity cannot be neglected. In this chapter, we look at the frequency dependent IQ imbalance estimation and compensation. We first look at the estimation and compensation of IQ imbalance at the transmitter, then look at joint RX IQ imbalance and frequency offset estimation and compensation at the receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “IEEE 802.11ad standard draft D0.1,” [Available] http://www.ieee802.org/11/Reports/tgadupdate.htm.

  2. M. Dohler, R. W. Heath, A. Lozano, C. B. Papadias, and R. A. Valenzuela, “Is the PHY layer dead?,” IEEE Commun. Mag., pp. 159–165, Apr. 2011.

    Google Scholar 

  3. M. Valkama, M. Renfors, and V. Koivunen, “Compensation of frequency-selective I/Q imbalances in wideband receivers: Models and algorithms,” Proc. SPAWC 2001, Taoyuan, Taiwan, R.O.C., March 20–23, 2001

    Google Scholar 

  4. Y. Tsai, C.-P. Yen, and X. Wang, “Blind frequency-dependent I/Q imbalance compensation for direct-conversion receivers,” IEEE Trans. Wireless Commun., vol. 9, no. 6, pp. 1976–1986, Jun. 2010.

    Article  Google Scholar 

  5. L. Anttila, M. Valkama, and M. Renfors, “Circularity-based I/Q imbalance compensation in wideband direct-conversion receivers,” IEEE Trans. on Veh. Technol., vol. 57, no. 4, pp. 2099–2113, Jul. 2008.

    Article  Google Scholar 

  6. L. Anttila, M. Valkama, and M. Renfors, “Frequency-selective I/Q mismatch calibration of wideband direct-conversion transmitters,” IEEE Trans. on Circuits and Systems-II: Express Briefs., vol. 55, no. 4, pp. 359–363, Apr. 2008.

    Article  Google Scholar 

  7. O. Mylläri, L. Anttila, and M. Valkama, “Digital transmitter I/Q imbalance calibration: real-time prototype implementation and performance measurement,” 18th European Signal Processing Conference (EUSIPCO-2010), Aalborg, Demark, Aug. 23–27, 2010.

    Google Scholar 

  8. G. Xing, M. Shen, and H. Liu, “Frequency offset and I/Q imbalance compensation for direct-conversion receivers,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 673–680, Mar. 2005.

    Article  Google Scholar 

  9. H. Lin, X. Zhu, and K. Yamashita, “Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance,” IEEE Trans. Commun., vol. 58, no. 2, pp. 448–452, Feb. 2010.

    Article  Google Scholar 

  10. Y.-C. Pan and S.-M. Phoon, “A time-domain joint estimation algorithm for CFO and I/Q imbalance in wideband direct-converstion receivers,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 2353–2361, Nov. 2012.

    Article  Google Scholar 

  11. A. Schuchert and R. Hasholzner, “A novel IQ imbalance compensation scheme for the receiption of OFDM signals,” IEEE Trans. Consum. Electron., vol. 47, no. 3, pp. 313–318, Aug. 2001.

    Article  Google Scholar 

  12. K. P. Pun, J. E. Franca, C. Azeredo-Leme, C. F. Chan and C. S. Choy, “Correction of frequency-dependent I/Q mismatches in quadrature receivers,” Electron. Lett., vol. 37, no. 23, pp. 1415–1417, Nov. 2001.

    Article  Google Scholar 

  13. S. Simoens, M. de Courville, F. Bourzeix, and P. de Champs, “New I/Q imbalance modeling and compensation in OFDM systems with frequency offset,” Proc. IEEE PIMRC 2002.

    Google Scholar 

  14. H. Minn and D. Munoz, “Pilot designs for channel estimation of MIMO OFDM systems with frequency-depedent I/Q imbalances,” IEEE Trans. Commun., vol. 58, no. 8, pp. 2252–2264, Aug. 2010.

    Article  Google Scholar 

  15. B. Narasimhan, S. Narayanan, H. Minn, and N. Al-Dhahir, “Reduced-complexity baseband compensation of joint Tx/Rx I/Q imbalance in mobile MIMO-OFDM,” IEEE Trans. Wireless Commun. vol. 9, no. 5, pp. 1720–1728, May 2010.

    Article  Google Scholar 

  16. B. Narasimhan, D. Wang, S. Narayanan, H. Minn, and N. Al-Dhahir, “Digital compensation of frequency-dependent joint Tx/Rx I/Q imbalance in OFDM systems under high mobility,” IEEE J. Sel. Topics in Signal Process. vol. 3, no. 3, pp. 405–417, Jun. 2009.

    Article  Google Scholar 

  17. M. Marey, M. Samir, and O. A. Dobre, “EM-based joint channel estimation and IQ imbalances for OFDM systems,” IEEE Trans. Broadcast., vol. 58, no. 1, pp. 106–113, Mar. 2012.

    Article  Google Scholar 

  18. J. Feigin and D. Brady, “Joint transmitter/receiver I/Q imbalance compensation for direct conversion OFDM in packet-switched multipath environments,” IEEE Trans. Signal Process., vol. 57, no. 11. pp. 4588–4593, Nov. 2009.

    Article  MathSciNet  Google Scholar 

  19. T. Schenk, P. Smulders, and E. Fledderus, “Estimation and compensation of TX and RX IQ imbalance in OFDM-based MIMO systems,” Proc. IEEE Radio and Wireless Symposium, pp. 215–218, 2006.

    Google Scholar 

  20. R. Chrabieh and S. Soliman, “IQ imbalance mitigation via unbiased training sequences,” Proc. IEEE Globecom 2007.

    Google Scholar 

  21. E. Lopez-Estraviz, S. D. Rore, F. Horlin, A. Bourdoux, and L. Van der Perre, “Pilot design for joint channel and frequency-dependent transmit/receive IQ imbalance estimation and compensation in OFDM-based transceivers,” Proc. IEEE ICC, 2007.

    Google Scholar 

  22. E. Lopez-Estraviz and L. Van der Perre, “EM based frequency-dependent transmit/receive IQ imbalance estimation and compensation in OFDM-based transceivers,” Proc. IEEE Globecom, 2007.

    Google Scholar 

  23. J. Luo, W. Keusgen, and A. Kortke, “Preamble designs for efficient joint channel and frequency-selective I/Q-imbalance compensation in MIMO-OFDM systems,” Proc. IEEE WCNC 2010.

    Google Scholar 

  24. Y. Zhou and Z. Pan, “Impact of LPF mismatch on I/Q imbalance in direct conversion receivers,” IEEE Trans. Wireless Commun., vol. 10. no. 6, pp. 1702–1708, Jun. 2011.

    Article  Google Scholar 

  25. Y. Li, L. Fan, H. Lin, and M. Zhao, “Simple Method to Separate and Simultaneously Estimate Channel and Frequency Dependent TX/RX IQ Imbalances for OFDM Systems,” submitted, Mar.2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Li, Y. (2014). Frequency Dependent IQ Imbalance Estimation and Compensation. In: In-Phase and Quadrature Imbalance. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8618-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8618-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8617-6

  • Online ISBN: 978-1-4614-8618-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics