Skip to main content

Frequency Independent IQ Imbalance Estimation and Compensation

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

For narrow band systems, the IQ imbalance can be assumed to be frequency independent. In this chapter, we look at the frequency independent IQ imbalance estimation and compensation. We start from simple RX only IQ imbalance estimation and compensation, then discuss joint TX and RX IQ imbalance compensation and estimation. After that we discuss the estimation and compensation of IQ imbalance when there is frequency offset. At last, we look at the IQ imbalance for multiple antenna systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    With a slight abuse of notations, here we use ξ t, m to denote the IQ imbalance for the m-th TX antennas, instead of the IQ imbalance at the m-th subcarrier, as is used in previous sections.

References

  1. Y. Yoshida, K. Hayashi, H. Sakai, and W. Bocquet, “Analysis and compensation of transmitter IQ imbalances in OFDMA and SC-FDMA systems,” IEEE Trans. Signal Process., vol. 57, no. 8, pp. 3119–3129, Aug. 2009.

    Article  MathSciNet  Google Scholar 

  2. L. Brotje, S. Vogeler, and K.-D. Kammeyer, “Estimation and correction of transmitter-caused I/Q imbalance in OFDM systems,” Proc. 7th Intl. OFDM Workshop, pp. 178–182, Sept. 2002.

    Google Scholar 

  3. Y.-H. Chung and S.-M. Phoong, “Joint estimation of I/Q imbalance, CFO and channel response for MIMO OFDM systems,” IEEE Trans. Commun. vol. 58, no. 5, pp. 1485–1492, May 2010.

    Article  Google Scholar 

  4. J. Qi and S. Aïssa, “Analysis and compensation of I/Q imbalance in MIMO transmit-receive diversity systems,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1546–1556, May 2010.

    Article  Google Scholar 

  5. A. Tarighat and A. H. Sayed, “MIMO OFDM receivers for systems with IQ imbalances,” IEEE Trans. Signal Process., vol. 53, no. 9, pp. 3583–3596, Sept. 2005.

    Article  MathSciNet  Google Scholar 

  6. A. Tarighat, R. Bagheri, and A. H. Sayed, “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3257–3268, Aug. 2005.

    Article  MathSciNet  Google Scholar 

  7. K.-Y. Sun and C.-C. Chao, “Estimation and compensation of I/Q imbalance in OFDM direct-conversion receivers,” IEEE J. Sel. Topics in Signal Process., vol. 3, no. 3, pp. 438–453, Jun. 2009.

    Article  Google Scholar 

  8. M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process., vol. 49, no. 10. pp. 2335–2344, Oct. 2001.

    Article  Google Scholar 

  9. Y. Egashira, Y. Tanabe, and K. Sato, “A novel IQ imbalance compesation method with pilot signals for OFDM system,” Proc. IEEE VTC-Fall, pp.1–5, 2006.

    Google Scholar 

  10. I.-H. Sohn, E.-R. Jeong, and Y. H. Lee, “Data-aided approach to I/Q mismatch and DC offsect compensation in communication receivers,” IEEE Commun. Lett., vol. 6, no. 12, pp. 547–549, Dec. 2002.

    Article  Google Scholar 

  11. L. Giugno, V. Lottici, and M. Luise, “Efficient compensation of I/Q phase imbalance for digital receivers,” Proc. IEEE ICC, 2005.

    Google Scholar 

  12. W. Namgoong and P. Rabiei, “CLRB-archieving I/Q mismatch estimator for low-IF receiver using repetitive training sequence in the presence of CFO,” IEEE Trans. Commun., vol. 60, no. 3, pp. 706–713, Mar. 2012.

    Article  Google Scholar 

  13. F. Horlin, A. Bourdoux, and L. V. der Perre, “Low-complexity EM-based joint acquisition of the carrier frquency offset and IQ imbalance,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2212–2220, Jun. 2008.

    Article  Google Scholar 

  14. G.-T. Gil, “Nondata-aided I/Q mismatch and DC offset compensation for direct-conversion receivers,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2662–2668, Jul. 2008.

    Article  MathSciNet  Google Scholar 

  15. S. Simoens, M. de Courville, F. Bourzeix, and P. de Champs, “New I/Q imbalance modeling and compensation in OFDM systems with frequency offset,” Proc. IEEE PIMRC 2002.

    Google Scholar 

  16. M. Marey, M. Samir, and O. A. Dobre, “EM-based joint channel estimation and IQ imbalances for OFDM systems,” IEEE Trans. Broadcast., vo. 58, no. 1, pp. 106–113, Mar. 2012.

    Google Scholar 

  17. P. Rykaczewski, M. Valkama, and M. Renfors, “On the connection of I/Q imbalance and channel equalization in direct-conversion tranceivers,” IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 1630–1636, May 2008.

    Article  Google Scholar 

  18. Y. Zou, M. Valkama, and M. Renfors, “Digital compensation of I/Q imbalance effects in space-time coded transmit diversity systems,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2496–2508, Jun. 2008.

    Article  MathSciNet  Google Scholar 

  19. Y.-H. Chung and S.-M. Phoon, “Channel estimation in the presence of transmitter and receiver I/Q mismatches for OFDM systems,” IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4476–4479, Sept. 2009.

    Article  Google Scholar 

  20. B. Debaillie, P. V. Wesemael, G. Vandersteen, and J. Craninckx, “Calibration of direct-conversion transceivers,” IEEE J. Sel. Topics in Signal Process., vol. 3, no. 3, pp. 488–498, Jun. 2009.

    Article  Google Scholar 

  21. S. A. Bassam, S. Boumaiza, and F. M. Ghannouchi, “Block-wise estimation of and compensation for I/Q imbalance in direct-conversion transmitters,” IEEE Trans. Signal Process., vol. 57, no. 12. pp. 4970–4973, Dec. 2009.

    Article  MathSciNet  Google Scholar 

  22. D. Tandur and M. Moonen, “Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5246–5252, Nov. 2007.

    Article  MathSciNet  Google Scholar 

  23. J. Feigin and D. Brady, “Joint transmitter/receiver I/Q imbalance compensation for direct conversion OFDM in packet-switched multipath environments,” IEEE Trans. Signal Process., vol. 57, no. 11. pp. 4588–4593, Nov. 2009.

    Article  MathSciNet  Google Scholar 

  24. T. Schenk, P. Smulders, and E. Fledderus, “Estimation and compensation of TX and RX IQ imbalance in OFDM-based MIMO systems,” Proc. IEEE Radio and Wireless Symposium, pp. 215–218, 2006.

    Google Scholar 

  25. R. Chrabieh and S. Soliman, “IQ imbalance mitigation via unbiased training sequences,” Proc. IEEE Globecom 2007.

    Google Scholar 

  26. A. Tarighat and A. H. Sayed, “Joint compensation of transmitter and receiver impairments in OFDM systems,” IEEE Trans. Wireless Commun. vol. 6, no. 1, pp. 240–247, Jan. 2007.

    Article  Google Scholar 

  27. C.-J. Hsu and W.-H. Sheen, “Joint calibration of transmitter and receiver impairments in direct-conversion radio architecture,” IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 832–841, Feb. 2012.

    Article  Google Scholar 

  28. W. Kirkland and K. Teo, “I/Q distortion correction for OFDM direct conversion receiver,” Electron. Lett., vol. 39, pp. 131–133, 2003.

    Article  Google Scholar 

  29. H. Minn and D. Munoz, “Pilot designs for channel estimation of MIMO OFDM systems with frequency-depedent I/Q imbalances,” IEEE Trans. Commun., vol. 58, no. 8, pp. 2252–2264, Aug. 2010.

    Article  Google Scholar 

  30. B. Narasimhan, S. Narayanan, H. Minn, and N. Al-Dhahir, “Reduced-complexity baseband compensation of joint Tx/Rx I/Q imbalance in mobile MIMO-OFDM,” IEEE Trans. Wireless Commun. vol. 9, no. 5, pp. 1720–1728, May 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Li, Y. (2014). Frequency Independent IQ Imbalance Estimation and Compensation. In: In-Phase and Quadrature Imbalance. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8618-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8618-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8617-6

  • Online ISBN: 978-1-4614-8618-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics