Skip to main content

Lignins and Abiotic Stress: An Overview

  • Chapter
  • First Online:

Abstract

Lignin is a major carbon sink in the biosphere accounting for about 30 % of total carbon sequestered in terrestrial plants. Being the second most abundant polymer on earth, it is a complex 3-dimensional polymer which is the principal structural component of plant cell wall. The phenylpropanoid pathway is responsible for biosynthesis of a variety of products that include lignin flavonoids and hydroxycinnamic acid conjugates. The phenylpropanoid metabolism has attracted significant research attention as lignin is a limiting factor in a number of agroindustrial processes like chemical pulping, forage digestibility and the processing of lignocellulosic plant biomass to bioethanol. Further, many functions of lignins and related products make the phenylpropanoid pathway essential to the health and survival of plants by providing resistance from abiotic and biotic stresses. These polymers play crucial role in plethora of ecological and biological functions which include shaping of wood characteristics, mechanical support in plants and most importantly stress management (biotic and abiotic stresses). Since lignins act synergistically in a number of agricultural processes, viz. crop production, vigour and disease resistance, thus insights into both the biosynthetic pathway and biodegradation of lignins are of prime significance. Due to the urgent requirement of upregulation and downregulation of lignin genes, focus has been drawn on the genetic engineering of its biosynthetic pathway. This proposed book chapter lays intensive focus on abiotic stress management through lignins by drawing a comparison between the process of lignification of plants under normal conditions as opposed to plants subjected to a variety of abiotic stresses such as drought, flooding, UV rays, heat, chilling and freezing and heavy metal stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akgul M, Copur Y, Temiz S (2007) A comparison of kraft and kraftsodium borohydrate brutia pine pulps. Build Environ 42:2586–2590

    Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    CAS  PubMed  Google Scholar 

  • Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus tremula: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 46:349

    Google Scholar 

  • Aquino EN, Mercado E (2004) Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama. Postharvest Biol Technol 33:275–283

    Google Scholar 

  • Arasan SKT, Park JI, Ahmed NU, Jung HJ, Hur Y, Kang KK, Lim YP, Nou IS (2013) Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiol Biochem 67C:144–153. doi:10.1016/j.plaphy.2013.02.030

    Google Scholar 

  • Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    CAS  PubMed  Google Scholar 

  • Barnes JD, Bettarini I, Polle A, Slee N, Raines C, Miglietta F, Raschi A, Fordham M (1997) The impact of elevated CO2 on growth and photosynthesis in Agrostis canina L. ssp. monteluccii adapted to contrasting atmospheric CO2 concentrations. Oecologia 110:169–178

    Google Scholar 

  • Basile A, Giordano S, Lopez-Saez JA, Cobianchi RC (1999) Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52:1479–1482

    CAS  PubMed  Google Scholar 

  • Bellaloui N (2012) Soybean seed phenol, lignin, and isoflavones and sugars composition are altered by Foliar Boron application in soybean under water stress. Food Nutr Sci 3:579–590

    CAS  Google Scholar 

  • Bhuiyan N, Liu W, Liu G, Selvaraj G, Wei Y, King J (2007) Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol Biol 64:305–318

    CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    CAS  PubMed  Google Scholar 

  • Bok-Rye L, Kil-Yong K, Woo-Jin J, Jean-Christophe A, Alain O, Tae-Hwan K (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58:1271

    Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    CAS  PubMed  Google Scholar 

  • Bonello P, Blodgett JT (2003) Pinus nigraSphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol Mol Plant Pathol 63:249–261

    Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–444

    CAS  PubMed  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455

    CAS  Google Scholar 

  • Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor beans. Plant Physiol 91:889–897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Budikova S (1999) Structural changes and aluminium distribution in maize root tissues. Biol Plant 42:259–266

    CAS  Google Scholar 

  • Campos R, Nonogaki H, Suslow T, Saltveit ME (2004) Isolation and characterization of a wound inducible phenylalanine ammonia-lyase gene (LsPAL1) from Romaine lettuce leaves. Physiol Plant 121:429–438

    CAS  Google Scholar 

  • Carpin S, Crevecoeur M, de Meyer M, Simon P, Greppin H, Penel C (2001) Identification of a Ca2C-pectate binding site on an apoplastic peroxidase. Plant Cell 13:511–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cesarino I, Araujo P, Domingues AP Jr, Adilson P, Mazzafera P (2012) An overview of lignin metabolism and its effect on biomass recalcitrance. Braz J Bot 35:303–311

    Google Scholar 

  • Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282

    CAS  PubMed  Google Scholar 

  • Chen EL, Chen YA, Chen LM, Liu ZH (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol Biochem 40:439–444

    CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    CAS  PubMed  Google Scholar 

  • Chowdhury EM, Choi BS, Park SU, Lim HS, Bae H (2012) Transcriptional analysis of hydroxycinnamoyl transferase (HCT) in various tissues of Hibiscus cannabinus in response to abiotic stress conditions. Plant Omics 5:305–313

    CAS  Google Scholar 

  • Cipollini DF (1997) Wind-induced mechanical stimulation increases pest resistance in common bean. Oecologia 111:84–90

    Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    CAS  PubMed  Google Scholar 

  • D’Arrigo RD, Jacoby GC, Free RM (1992) Tree-ring width and maximum latewood density at the North American tree line: parameters of climatic change. Can J For Res 22:1290–1296

    Google Scholar 

  • Delessert C, Wilson I, Van Der Straeten D, Dennis E, Dolferus R (2004) Spatial and temporal analysis of the local response to wounding. Plant Mol Biol 55:165–181

    CAS  PubMed  Google Scholar 

  • Depege N, Thonat C, Coutand C, Julien JL, Boyer N (1997) Morphological responses and molecular modification in tomato plants after mechanical stimulation. Plant Cell Physiol 38:1127–1134

    CAS  PubMed  Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1995) A β-glucosidase from lodge-pole pine xylem specific for the lignin precursor coniferin. Plant Physiol 107:331–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161:179–188

    CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Douglas CJ, Ehlting J (2005) Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry. Transgenic Res 14:551–561

    CAS  PubMed  Google Scholar 

  • Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71

    CAS  PubMed  Google Scholar 

  • Eckstein D, Aniol RW (1981) Dendroclimatological reconstruction of the summer temperatures for an alpine region. Mitt Forstl Bundesversuchsanst Wien 142:391–398

    Google Scholar 

  • Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121:66–74

    CAS  PubMed  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    CAS  PubMed  Google Scholar 

  • El Kayal W, Keller G, Debayles C, Kumar R, Weier D, Teulieres C, Marque C (2006) Regulation of tocopherol biosynthesis through transcriptional control of tocopherol cyclase during cold hardening in Eucalyptus gunnii. Physiol Plant 126:212–223

    Google Scholar 

  • Fan L, Neumann PM (2004) The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiol 135:2291–2300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140:603–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fengel D, Wegener G (1984) Wood chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Google Scholar 

  • Fergus BJ, Goring DA (1970) The distribution of lignin in birch wood as determined by ultraviolet microscopy. Holzforschung 24:118–124

    CAS  Google Scholar 

  • Frankenstein C, Schmitt U, Koch G (2006) Topochemical studies on modified lignin distribution in the xylem of poplar (Populus spp.) after wounding. Ann Bot 97:195–204

    CAS  PubMed  Google Scholar 

  • Fraser TE, Silk WK, Rost TL (1990) Effects of low water potential on cortical cell length in growing regions of maize roots. Plant Physiol 93:648–651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita M, Harada H (1979) Autoradiographic investigations of cell wall development. II. Tritiated phenylalanine and ferulic acid assimilation in relation to lignification. Mokuzai Gakkaishi 25:89–94

    CAS  Google Scholar 

  • Fustec E, Chauvet E, Gilbert G (1989) Lignin degradation and humus formation in alluvial soils and sediments. Appl Environ Microbiol 55:922–926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Deposition of suberin in roots of soybean 893 induced by excess boron. Plant Sci 168:397–405

    CAS  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9(76):2749–2766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson LJ, Ashby MF, Harley BA (2010) Cellular materials in nature and medicine. Cambridge University Press, Cambridge

    Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees Struct Funct 14:409–414

    Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

    CAS  PubMed  Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barriere Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C R Biol 327:455–465

    CAS  PubMed  Google Scholar 

  • Guenni O, Douglas M, Baruch Z (2002) Responses to drought of five Brachiaria species. Biomass production, leaf growth, root distribution, water use and forage quality. Plant Soil 243:229–241

    CAS  Google Scholar 

  • Gulen H, Eris A (2004) Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci 166:739–744

    CAS  Google Scholar 

  • Guo XY, Zhang SZ, Shan XQ (2008) Adsorption of metal ions on lignin. J Hazard Mater 151:134–142

    CAS  PubMed  Google Scholar 

  • Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21:273–322

    CAS  Google Scholar 

  • Haider S, Azmat R (2012) Failure of survival strategies in adaption of heavy metal environment in Lens culinaris and Phaseolus mungo. Pak J Bot 44:1959–1964

    Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press, Boca Raton, FL, pp 24–26

    Google Scholar 

  • Hardell HL, Leary OJ, Stoll M, Westermark U (1980) Variation in lignin structure in defined morphological parts of birch. In: Lin SY, Dence C (eds) Chemistry. Springer, Berlin, Svensk papperstidning, pp 83:71–74

    Google Scholar 

  • Harkin JM (1967) Lignin production and detection in wood. Forest Products Laboratory, Forest Service U.S. Department of Agriculture University of Wisconsin

    Google Scholar 

  • Harman G, Patrick R, Spittler T (2007) Removal of heavy metals from polluted waters using lignocellulosic agricultural waste products. Ind Biotechnol 3:366–374

    CAS  Google Scholar 

  • Hausman JF, Evers D, Thiellement H, Jouve L (2000) Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments. Plant Cell Rep 19:954–960

    CAS  Google Scholar 

  • Hawkins S, Boudet A (2003) ‘Defence lignin’ and hydroxycinnamyl alcohol dehydrogenase activities in wounded Eucalyptus gunnii. Eur J Plant Pathol 33:91–104

    Google Scholar 

  • Heredia J, Cisneros-Zevallos L (2009) The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biol Technol 51:242–249

    CAS  Google Scholar 

  • Higuchi T (1985) Biosynthesis of lignin. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, New York, pp 141–160

    Google Scholar 

  • Hilal M, Parrado MF, Rosa M, Gallardo M, Orce L, Marta Massa E, Gonzalez JA, Prado FE (2004) Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochem Photobiol 79:205–210

    CAS  PubMed  Google Scholar 

  • Hossain MT, Mori R, Wakabayashi KSK (2002) Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. J Plant Res 115:23–27

    CAS  PubMed  Google Scholar 

  • Hossain MA, Zakir AK, Hossain M, Kihara T, Koyama H, Hara T (2005) Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings. J Soil Sci Plant Nutr 51(2):223–230

    CAS  Google Scholar 

  • Hu Y, Li WC, Xu YQ, Li GJ, Liao Y, Fu FL (2009) Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. J Appl Genet 50(3):213–223

    CAS  PubMed  Google Scholar 

  • Jain R, Shrivastava A, Solomon S, Yadav R (2007) Low temperature stress-induced biochemical changes affect stubble bud sprouting in sugarcane (Saccharum spp. hybrid). Plant Growth Regul 53:17–23

    CAS  Google Scholar 

  • Janas KM, Cvikrova M, Palagiewicz A, Eder J (2000) Alterations in phenylpropanoid content in soybean roots during low temperature acclimation. Plant Physiol Biochem 38:587–593

    CAS  Google Scholar 

  • Janda T, Szalai G, Lesko K, Yordanova R, Apostol S, Popova LP (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68:1674–1682

    CAS  PubMed  Google Scholar 

  • Janska A, Aprile A, Zamecnik J, Cattivelli L, Ovesna J (2011) Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct Integr Genomics 11:307–325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston HH (1964) The relationship of brown humus to lignin. Plant Soil 21:191–200

    CAS  Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    CAS  PubMed  Google Scholar 

  • Kacperska A (1993) Water potential alteration—a prerequisite or a triggering stimulus for the development of freezing tolerance in overwintering herbaceous plants? In: Li PH, Christerson L (eds) Advances in plant cold hardiness. CRC Press, Boca Raton, pp 73–91

    Google Scholar 

  • Kaneda M, Rensing KH, Wong JC, Banno B, Mansfield SD, Samuels AL (2008) Tracking monolignols during wood development in lodgepole pine. Plant Physiol 147:1750–1760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasraie P, Nasri M, Khalatbari M (2012) The effects of time spraying amino acid on water deficit stress on yield, yield component and some physiological characteristics of grain corn (TWC647). Ann Biol Res 3:4282–4286

    CAS  Google Scholar 

  • Kim WJ, Campbell AG, Koch P (1989) Chemical variation in lodgepole pine with latitude, elevation, and diameter class. For Prod J 39:7–12

    CAS  Google Scholar 

  • Kim YJ, Kim DG, Lee SH, Lee I (2006) Wound-induced expression of the ferulate 5-hydroxylase gene in Camptotheca acuminata. Biochim Biophys Acta 1760:182–190

    CAS  PubMed  Google Scholar 

  • Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol 77:226–233

    CAS  PubMed  Google Scholar 

  • Kitin P, Voelker SL, Meinzer FC, Beeckman H, Strauss SH, Lachenbruch B (2010) Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy. Plant Physiol 154:887–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komastu S, Kobayashi Y, Nishizawa K, Naryo Y, Furukawa K (2010) Comparative proteomics analysis of differentially expressed protein in soy bean cell wall during flooding stress. Amino Acids 39:1435–1449

    Google Scholar 

  • Kusumoto D (2005) Concentrations of lignin and wall-bound ferulic acid after wounding in the phloem of Chamaecyparis obtusa. Trees Struct Funct 19:451–456

    CAS  Google Scholar 

  • Lee BG, Rowell RM (2004) Removal of heavy metals ions from aqueous solutions using lignocellulosic fibers. J Nat Fibr 1(1):97–108

    CAS  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides—a complex process. Curr Opin Plant Biol 9:621–630

    CAS  PubMed  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin—occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    CAS  PubMed  Google Scholar 

  • Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    CAS  PubMed  Google Scholar 

  • Li Z, Peng Y, Ma X (2013) Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiol Plant 35(1):213–222

    Google Scholar 

  • Lichtenthaler HK, Buschmann C, Doll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U (1981) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth Res 2:115–141

    CAS  Google Scholar 

  • Liljegren S, Ditta G, Eshed Y, Savidge B, Bowman J, Yanofsky M (2000a) Control of fruit dehiscence in Arabidopsis by the SHATTERPROOF MADS‐box genes. Nature 404:766–769

    CAS  PubMed  Google Scholar 

  • Liljegren S, Kempin S, Chen A, Roeder A, Guimil S, Khammungkhune T, Yanofsky M (2000b) A bHLH gene, INDEHISCENT1, is required for fruit dehiscence and mediates the fruitful phenotype. In: 11th international conference on Arabidopsis research, University of Madison Press, Madison, WI

    Google Scholar 

  • Lima JD, Mazzafera P, Moraes WS, Silva RB (2009) Chá: aspectos relacionados a qualidade e perspectivas. Ciên Rural 39:1270–1278

    Google Scholar 

  • Lisar SYS, Motafakkerazad R, Hossain MM, Rahman IMM (2012) Water stress in plants: causes,effect and responses. In: Ismail MR (ed) Water stress. InTech Publishers pp 1–15

    Google Scholar 

  • Liu X, Huang B (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bent grass. Crop Sci 40:503–510

    CAS  Google Scholar 

  • Liu C-J, Miao Y-C, Zhang K-W (2011) Sequestration and transport of lignin monomeric precursors. Molecules 16:710–727

    CAS  PubMed  Google Scholar 

  • Liu X, Zhu H, Qin C, Zhou J, Zhao JR, Wang S (2013) Heavy metal ions on lignin derivative. BioResources 8:2257–2269

    CAS  Google Scholar 

  • Maki K, Kouisni L, Paleologou M, Haolt-Hindle P (2012) The FPInnovations lignin demonstration plant: process and lignin products. Bio Economy Technology Centre Thunder Bay, Ontario Chemical Engineering & Technology, 2012 TAAPI PEERS Conference, U.S.A. pp 1863–1871

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Moerschbacher BM, Noll U, Flott B, Reisner HJ (1988) Lignin biosynthetic enzymes in stem rust infected, resistant and susceptible near-isogenic wheat lines. Physiol Mol Plant Pathol 33:33–46

    CAS  Google Scholar 

  • Moerschbacher BM, Noll U, Gorrichon L, Reisener H-J (1990) Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust. Plant Physiol 93:465–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohr P, Cahill D (2004) Suppression by abscisic acid of lignin production and monolignol pathway gene expression in interactions of Arabidopsis with oomycete and bacterial pathogens. In: Phytopathology: abstracts of the American Society of Plant Biologists annual meeting, American Society of Plant Biologists, St. Paul, MN, p 72

    Google Scholar 

  • Moller R, Ball R, Henderson A, Modzel G, Find J (2006) Effect of light and activated charcoal on tracheary element differentiation in callus cultures of Pinus radiata D. Don. Plant Cell Tiss Org Cult 85:161–171

    Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low temperature signal transduction: induction of cold acclimation—specific genes of alfalfa by calcium at 25°C. Plant Cell 7:321–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore KJ, Jung HJG (2001) Lignin and fiber digestion. J Range Manage 54:420–430

    Google Scholar 

  • Moura JCMS, Bonine CAV, Viana JOF, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    CAS  PubMed  Google Scholar 

  • Moura JCMS, Bonine CAV, Viana JOF, Dornelas MC, Mazzafera P (2011) Drought stress and changes in the lignin content and composition in Eucalyptus. BMC Proc 5(suppl 7):P103

    Google Scholar 

  • Musha Y, Goring DAI (1975) Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Sci Technol 9:45–58

    CAS  Google Scholar 

  • Nakashima J, Mizuno T, Takabe K, Fujita M, Saiki H (1997) Direct visualization of lignifying secondary wall thickenings in Zinnia elegans cells in culture. Plant Cell Physiol 38:818–827

    CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    CAS  Google Scholar 

  • Nilsen ET, Orcutt DM (1996) The physiology of plants under stress: abiotic factors. Wiley, New York, p 689

    Google Scholar 

  • Nilsson R, Bernfur K, Gustavsson N, Bygdell J, Wingsle G, Larsson C (2010) Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation. Mol Cell Proteomics 9:368–387

    CAS  PubMed  Google Scholar 

  • Olenichenko N, Zagoskina N (2005) Response of winter wheat to cold: production of phenolic compounds and L-phenylalanine ammonia lyase activity. Appl Biochem Microbiol 41:600–603

    CAS  Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa R (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    CAS  PubMed  Google Scholar 

  • Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Wiley, Weinheim

    Google Scholar 

  • Parajuli D, Inoue K, Ohto K, Oshima T, Murota A, Funaoka M, Makino K (2005) Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel. React Funct Polym 62:129–139

    CAS  Google Scholar 

  • Peet MM, Willits DH (1998) The effect of night temperature on greenhouse grown tomato yields in warm climate. Agric For Meteorol 92:191–202

    Google Scholar 

  • Pickett-Heaps JD (1968) Xylem wall deposition: radioautographic investigations using lignin precursors. Protoplasma 65:181–205

    CAS  Google Scholar 

  • Pintó-Marijuan MP, Joffre R, Casals I, De Agazio M, Zacchini M, García-Plazaola JI, Esteban R, Aranda X, Guárdia M, Fleck M (2013) Antioxidant and photoprotective responses to elevated CO2 and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (near-infrared reflectance spectroscopy). Plant Biol 15:5–17

    PubMed  Google Scholar 

  • Poiša L, Adamovičs A, Platače R, Teirumnieka E (2011) Evaluation of the factors that affect the lignin content in the reed canarygrass (Phalaris arundinacea L.) in Latvia. BioTechnology 1:224–231

    Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol 106:53–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polle A, Otter T, Sandermann H Jr (1997) Biochemistry and physiology of lignin synthesis. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees—contributions to modern tree physiology. Backhuys, Leiden, pp 455–475

    Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    CAS  PubMed  Google Scholar 

  • Pritchard J (1994) The control of cell expansion in roots. New Phytol 127:3–26

    CAS  Google Scholar 

  • Ralph J, Brunow G, Boerjan W (2007) Lignins. In: Rose F, Osborne K (eds) Encyclopedia of life sciences. Wiley, Chichester. doi:10.1002/9780470015902.a0020

    Google Scholar 

  • Ramirez DA, Munoz SV, Atehortua L, Michel FC Jr (2010) Effects of different wavelengths of light on lignin peroxidase production by the white-rot fungi Phanerochaete chrysosporium grown in submerged cultures. Bioresour Technol 101:9213–9220

    CAS  PubMed  Google Scholar 

  • Raven JA (1984) Physiological correlates of the morphology of early vascular plants. Bot J Linn Soc 88:105–126

    Google Scholar 

  • Reina JJ, Dominguez E, Heredia A (2001) Water sorption-desorption in conifer cuticles: the role of lignin. Physiol Plant 112:372–378

    CAS  PubMed  Google Scholar 

  • Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    CAS  PubMed  Google Scholar 

  • Robson AD, Hartley RD, Jarvis SC (1981) Effect of copper deficiency on phenolic and other constituents of wheat cell walls. New Phytol 89:361–371

    CAS  Google Scholar 

  • Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17–30

    CAS  Google Scholar 

  • Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM (2005) Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J Exp Bot 56:1651–1663

    CAS  PubMed  Google Scholar 

  • Rolando C, Monties B, Lapierre C (1992) Thioacidolysis. In: Dence CW, Lin SY (eds) Methods in lignin chemistry. Springer, Heidelberg, pp 334–349

    Google Scholar 

  • Ros Barcelo A (2005) Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220(5):747–756

    CAS  PubMed  Google Scholar 

  • Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    CAS  PubMed  Google Scholar 

  • Saka S, Goring D (1988) The distribution of lignin in white birch wood as determined by bromination with TEM-EDXA. Holzforschung 42:149–153

    CAS  Google Scholar 

  • Samuels AL, Rensing K, Douglas CJ, Mansfield S, Dharmawardhana P, Ellis B (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72–82

    CAS  PubMed  Google Scholar 

  • Santos RB, Capanema EA, Balakshin MY, Chang HM, Jameel H (2011) Effect of hardwoods characteristics on kraft pulping process: emphasis on lignin structure. BioResources 6(4):3623–3637

    CAS  Google Scholar 

  • Santos RB, Hart P, Jameel H, Chang HM (2012) Kinetics of hardwood carbohydrate degradation during kraft pulp cooking. Ind Eng Chem Res 51:12192–12198

    CAS  Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Lignin: occurrence, formation, structure, and reactions. Wiley, New York

    Google Scholar 

  • Sasaki M, Yamamoto Y, Matsumoto H (1996) Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiol Plant 96:193–198

    CAS  Google Scholar 

  • Schöffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes, Austin, TX, pp 81–98

    Google Scholar 

  • Sgherri C, Stevanovic B, Navari-Izzo F (2004) Role of phenolic acid during dehydration and rehydration of Ramonda serbica. Physiol Plant 122:478–485

    CAS  Google Scholar 

  • Silber MV, Meimberg H, Ebel J (2008) Identification of a 4-coumarate: CoA ligase gene family in the moss, Physcomitrella patens. Phytochemistry 69:2449–2456

    CAS  PubMed  Google Scholar 

  • Siqueira G, Milagres AMF, Carvalho W, Koch G, Ferraz A (2011) Topochemical distribution of lignin and hydroxycinnamic acids in sugarcane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol Biofuels 4:1–9

    Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic, New York. ISBN 0-12-647480-X

    Google Scholar 

  • Solecka D, Boudet A-M, Kacperska A (1999) Phenylpropanoid and anthocyanin changes in low-temperature treated winter oilseed rape leaves. Plant Physiol Biochem 37:491–496

    CAS  Google Scholar 

  • Steeves C, Forster H, Pommer U, Savidge R (2001) Coniferyl alcohol metabolism in conifers. I. Glucosidic turnover of cinnamyl aldehydes by UDPG: coniferyl alcohol glucosyltransferase from pine cambium. Phytochemistry 57:1085–1093

    CAS  PubMed  Google Scholar 

  • Steponkus P (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) Membrane destabilization during freeze-induced dehydration. Curr Top Plant Physiol 10:37–47

    CAS  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge University Press, New York, NY

    Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    CAS  Google Scholar 

  • Syros TD, Yupsanis TA, Economou AS (2005) Expression of peroxidases during seedling growth in Ebenus cretica L. as affected by light and temperature treatments. Plant Growth Regul 46:143–151

    CAS  Google Scholar 

  • Tahara K, Norisada M, Hogetsu T, Kojima K (2005) Aluminum tolerance and aluminum-induced deposition of callose and lignin in the root tips of Melaleuca and Eucalyptus species. J For Res 10:325–333

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takabe K, Fujita M, Harada H, Saiki H (1985) Autoradiographic investigations of lignification in the cell walls of cryptomeria (Cryptomeria japonica D. Don). Mokuzai Gakkaishi 31:613–619

    CAS  Google Scholar 

  • Takahama U (1988) Hydrogen peroxide-dependent oxidation of flavonoids and hydroxycinnamic acid derivatives in epidermal and guard cells of Tradescantia virginiana L. Plant Cell Physiol 29:475–481

    CAS  Google Scholar 

  • Taşgin E, Atici O, Nalbantoğlu B, Popovac LP (2006) Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 67:710–715

    PubMed  Google Scholar 

  • Terashima. N (1989) An improved radiotracer method for studying formation and structure of lignin. In: Lewis NG, Paice MG (eds) Plant cell wall polymers: biogenesis and biodegradation. ACS Symposium Series No. 399, pp 148–159 American Chemical Society, Washington DC

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    CAS  Google Scholar 

  • Tong XL, Ma Y, Li YD (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A-Gen 385:1–13

    CAS  Google Scholar 

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    CAS  Google Scholar 

  • Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    PubMed Central  PubMed  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    CAS  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137:949–960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vishtal A, Kraslawski K (2011) Challenges of lignins. BioResources 6(3):3547–3568

    Google Scholar 

  • Waltersson J (2009) The metal binding properties of kraft lignin. Degree Project, ECTS 30.0

    Google Scholar 

  • Wardrop AB (1969) The structure of the cell wall in lignified collenchyma of Eryngium sp. Aus J Bot 17(2):229–240

    Google Scholar 

  • Wen JL, Sun SL, Xue BL, Sun RC (2013) Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens). Holzforschung. doi:10.1515/hf-2012-0162

  • Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    CAS  PubMed  Google Scholar 

  • Weng J-K, Banks JA, Chapple C (2008a) Parallels in lignin biosynthesis. Commun Integr Biol 1:20–22

    CAS  PubMed  Google Scholar 

  • Weng J-K, Li X, Stout J, Chapple C (2008b) Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci U S A 105:7887–7892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolter KE, Harkin JM, Kirk TK (1974) Guaiacyl lignin associated with vessels in aspen callus cultures. Plant Physiol 31:140–143

    Google Scholar 

  • Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(suppl 11):S3

    PubMed Central  PubMed  Google Scholar 

  • Yamaguchi M, Valliyodam B, Zhang J, Lenoble ME, Yu O, Roger E, Nguyen HT, Sharp RE (2010) Regulation of growth response to water stress in the soya bean primary roots. Proteomic analysis reveals regions specific regulation of phenylpropanoid metabolism and control of free ion in elongation zone. Springer 33:223–243

    CAS  Google Scholar 

  • Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012) Microscale thioacidolysis method for the rapid analysis of β-O-4 substructures in lignin. Plant Biol 29:419–423

    CAS  Google Scholar 

  • Yamamura M, Noda S, Hattori T, Shino A, Kikuchi J, Takabe K, Tagane S, Gau M, Uwatoko N, Mii M, Suzuki S, Shibata D, Umezawa T (2013) Characterization of lignocellulose of Erianthus arundinaceus in relation to enzymatic saccharification efficiency. Plant Biotechnol 30:25–35

    Google Scholar 

  • Yamasaki S, Noguchi N, Mimaki K (2007) Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons. J Radiat Res 48:443–454

    CAS  PubMed  Google Scholar 

  • Yang L, Wang CC, Guo WD, Li XB, Lu M, Yu CL (2006) Differential expression of cell wall related genes in the elongation zone of rice roots under water deficit. Rus J Plant Physiol 53:390–395

    CAS  Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C-3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49:226–241

    CAS  PubMed  Google Scholar 

  • Yun Z, Gao H, Liu P, Liu S, Luo T, Jin S, Xu Q, Xu J, Cheng Y, Deng X (2013) Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol 13:44. doi:10.1186/1471-2229-13-44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zagoskina NV, Dubravina GA, Alyavina AK, Goncharuk EA (2003) Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Rus J Plant Physiol 50:270–275

    CAS  Google Scholar 

  • Zagoskina N, Goncharuk E, Alyavina A (2007) Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Rus J Plant Physiol 54:237–243

    CAS  Google Scholar 

  • Zeyen RJ, Carver TLW, Lyngkjaer MF (2002) Epidermal cell papillae. In: Belanger RR, Bushnell WR (eds) The powdery mildew: a comprehensive treatise. APS Press, St Paul, MN, pp 107–125

    Google Scholar 

  • Zhou C, Li Q, Chiang VL, Lucia LA, Griffis DP (2011) Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time of flight secondary ion mass spectrometry. Anal Chem 83:7020–7026

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhardwaj, R. et al. (2014). Lignins and Abiotic Stress: An Overview. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8591-9_10

Download citation

Publish with us

Policies and ethics