Skip to main content

Introduction

  • Chapter
  • First Online:
Nanofins

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 676 Accesses

Abstract

Some of the ubiquitous terminologies used in this book are defined initially, as a caveat and to allay potential confusion. A considerable portion of this book is based on contents from a previous publication (Singh N, 2010, PhD Thesis, Texas A&M University). The nanofin effect and the associated nuances of this phenomenon are introduced in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Similarly, in boiling literature, “microlayer” refers to molecular structures of the nonvapor phase (liquid or semisolid structures) that are estimated to be ~100 nm thick. “Microparticles” and “microstructures” refer to features with dimensions in the range of 1–500 microns (μm), where 1 μm = 10−6 m.

References

  • Ahn HS, Sinha N, Zhang M, Banerjee D, Fang S, Baughman RH (2006) Pool boiling experiments on multiwalled carbon nanotube (mwcnt) forests. J Heat Trans 128:1335–1342

    Article  Google Scholar 

  • Banerjee D, Dhir VK (2001) Study of subcooled film boiling on a horizontal disc: part 2—experiments. J Heat Trans 123:285–293

    Article  Google Scholar 

  • Banerjee D, Son G, Dhir VK (1996) Conjugate thermal and hydrodynamic analyses of saturated film boiling from a horizontal surface. ASME Heat Transfer Div Publ HTD 334:57–64

    Google Scholar 

  • Benda R, Bullen J, Plomer A (1996) Synthetics basics: polyalphaolefins-base fluids for high-performance lubricants. J Synth Lubr 13:41–57

    Article  Google Scholar 

  • Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Appl Phys Lett 84:4613–4616

    Article  Google Scholar 

  • Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769

    Article  Google Scholar 

  • Bridges NJ, Visser AE, Fox EB (2011) Potential of nanoparticle-enhanced ionic liquids (neils) as advanced heat-transfer fluids. Energy Fuels 25:4862

    Article  Google Scholar 

  • Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 87:161909

    Article  Google Scholar 

  • Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312–094312-094314

    Google Scholar 

  • Chen R, Lu M-C, Srinivasan V, Wang Z, Cho HH, Majumdar A (2009) Nanowires for enhanced boiling heat transfer. Nano Lett 9:548–553

    Article  Google Scholar 

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  • Derjaguin BV, Zorin ZM (1957) Optical study of the absorption and surface condensation of vapors in the vicinity of saturation on a smooth surface, vol 2. In: Proceeding of 2nd international cogress on surface activity, London, pp 145–152

    Google Scholar 

  • Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (cnt nanofluids). Int J Heat Mass Transf 49:240–250

    Article  Google Scholar 

  • Hendricks TJ, Krishnan S, Choi C, C-H Chang, Paul B (2010) Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int J Heat Mass Transf 53:3357–3365

    Article  Google Scholar 

  • Hu Y, Banerjee D (2013) Numerical investigation of the effect of chirality of carbon nanotube on the interfacial thermal resistance. J Nanofluid 2:29–37

    Article  Google Scholar 

  • Huitink D, Ganguly S, Banerjee D, Yerkes K (2007) Convective heat transfer enhancements using nanofluids. In: Proceedings of the nanofluids: fundamentals and applications (engineering conferences international)

    Google Scholar 

  • Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734

    Article  Google Scholar 

  • Im Y, Joshi Y, Dietz C, Lee SS (2010) Enhanced boiling of a dielectric liquid on copper nanowire surfaces. Int J Micro-Nano Scale Transp 1:79–96

    Article  Google Scholar 

  • Jackson JE, Borgmeyer BV, Wilson CA, Cheng P, Bryan JE (2006) Characteristics of nucleate boiling with gold nanoparticles in water. In: Proceedings of the IMECE 2006, IMECE2006-16020

    Google Scholar 

  • Jo B (2012) Numerical and experimental investigation of organic nanomaterials for thermal energy storage and for concentrating solar power applications. Dissertation, Texas A&M University, College Station

    Google Scholar 

  • Jo B, Banerjee D (2010) Study of high temperature nanofluids using carbon nanotubes (cnt) for solar thermal storage applications. ASME

    Google Scholar 

  • Jo B, Banerjee D (2011a) Interfacial thermal resistance between a carbon nanoparticle and molten salt eutectic: effect of material properties, particle shapes and sizes. In: ASME/JSME 8th thermal engineering joint conference, Honolulu, HI, pp 13–17

    Google Scholar 

  • Jo B, Banerjee D (2011b) Enhanced viscosity of aqueous silica nanofluids. Dev Strateg Mater Comput Des II: Ceram Eng Sci Proc 32:139–146

    Article  Google Scholar 

  • Jung S (2012) Numerical and experimental investigation of inorganic nanomaterials for thermal energy storage (tes) and concentrated solar power (csp) applications. Dissertation, Texas A&M University, College Station

    Google Scholar 

  • Jung S, Banerjee D (2011) Enhancement of heat capacity of nitrate salts using mica nanoparticles. Dev Strateg Mater Comput Des II: Ceram Eng Sci Proc 32:127–137

    Article  Google Scholar 

  • Kakac S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196

    Article  MATH  Google Scholar 

  • Khanikar V, Mudawar I, Fisher T (2009a) Effects of carbon nanotube coating on flow boiling in a micro-channel. Int J Heat Mass Transf 52:3805–3817

    Article  Google Scholar 

  • Khanikar V, Mudawar I, Fisher TS (2009b) Flow boiling in a micro-channel coated with carbon nanotubes. IEEE Trans Compon Packag Technol 32:639–649

    Article  Google Scholar 

  • Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Appl Phys Lett 87:215502

    Article  Google Scholar 

  • Kordas K, Toth G, Moilanen P, Kumpumaki M, Vahakangas J, Uusimaki A, Vajtai R, Ajayan P (2007) Chip cooling with integrated carbon nanotube microfin architectures. Appl Phys Lett 90:123105

    Article  Google Scholar 

  • Launay S, Fedorov A, Joshi Y, Cao A, Ajayan P (2006) Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectron J 37:1158–1164

    Article  Google Scholar 

  • Maune H, Chiu HY, Bockrath M (2006) Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates. Appl Phys Lett 89:013109

    Article  Google Scholar 

  • Mudawar I, Anderson TM (1990) Parametric investigation into the effects of pressure, subcooling, surface augmentation and choice of coolant on pool boiling in the design of cooling systems for high-power-density electronic chips. J Electron Packag 112:375–383

    Article  Google Scholar 

  • Murad S, Puri IK (2008) Thermal transport across nanoscale solid-fluid interfaces. Appl Phys Lett 92:133105

    Article  Google Scholar 

  • Namburu P, Kulkarni D, Dandekar A, Das D (2007) Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett 2:67–71 IET

    Article  Google Scholar 

  • Nelson IC, Banerjee D, Ponnappan R (2009) Flow loop experiments using polyalphaolefin nanofluids. J Thermophys Heat Transf 23:752–761

    Article  Google Scholar 

  • Sathyamurthi V, Ahn HS, Banerjee D, Lau SC (2009) Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes. J Heat Trans 131:071501

    Article  Google Scholar 

  • Shanks HR, Maycock PD, Sidles PH, Danielson GC (1963) Thermal conductivity of silicon from 300 to 1,400 °K. Phys Rev 130:1743–1748

    Article  Google Scholar 

  • Shin D (2011) Molten salt nanomaterials for thermal energy storage and concentrated solar power applications. Dissertation, Texas A&M University, College Station

    Google Scholar 

  • Shin D, Banerjee D (2011a) Enhancement of heat capacity of molten salt eutectics using inorganic nanoparticles for solar thermal energy applications. Dev Strateg Mater Comput Des II: Ceram Eng Sci Proc 32:119–126

    Article  Google Scholar 

  • Shin D, Banerjee D (2011b) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf 54:1064–1070

    Article  Google Scholar 

  • Shin D, Banerjee D (2011c) Enhanced specific heat of silica nanofluid. J Heat Trans 133:024501

    Article  Google Scholar 

  • Shin D, Banerjee D (2010) Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress). Int J Struct Changes Solids 2:25–31

    Google Scholar 

  • Shin D, Banerjee D (2013) Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures. J Heat Transf (accepted, in print) 3:135

    Google Scholar 

  • Singh N (2010) Computational analysis of thermo-fluidic characteristics of a carbon nano-fin. Dissertation, Texas A&M University, College Station

    Google Scholar 

  • Singh N, Sathyamurthy V, Peterson W, Arendt J, Banerjee D (2010) Flow boiling enhancement on a horizontal heater using carbon nanotube coatings. Int J Heat Fluid Flow 31:201–207

    Article  Google Scholar 

  • Singh N, Unnikrishnan V, Banerjee D, Reddy J (2011) Analysis of thermal interfacial resistance between nanofins and various coolants. Int J Comput Methods Eng Sci Mech 12:254–260

    Article  MATH  Google Scholar 

  • Singh N, Shin D, Banerjee D (2012) In: Kaul AB (ed.) Nano-scale effects in multi-phase flows and heat transfer: microelectronics to nanoelectronics: materials, devices and manufacturability. CRC press (Taylor and Francis), Boca Raton, FL

    Google Scholar 

  • Sriraman SR (2007) Pool boiling on nano-finned surfaces. Texas A&M University, College Station

    Google Scholar 

  • Sunder M, Banerjee D (2009) Experimental investigation of micro-scale temperature transients in sub-cooled flow boiling on a horizontal heater. Int J Heat Fluid Flow 30:140–149

    Article  Google Scholar 

  • Ujereh S, Fisher T, Mudawar I (2007) Effects of carbon nanotube arrays on nucleate pool boiling. Int J Heat Mass Transf 50:4023–4038

    Article  Google Scholar 

  • Unnikrishnan VU, Banerjee D, Reddy JN (2008) Atomistic-mesoscale interfacial resistance based thermal analysis of carbon nanotube systems. Int J Therm Sci 47:1602–1609

    Article  Google Scholar 

  • Vajjha RS, Das DK (2009) Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf 131

    Google Scholar 

  • Wu W, Bostanci H, Chow L, Hong Y, Su M, Kizito J (2010) Nucleate boiling heat transfer enhancement for water and fc-72 on titanium oxide and silicon oxide surfaces. Int J Heat Mass Transf 53:1773–1777

    Article  Google Scholar 

  • Yu J (2012) Experimental investigation of heat transfer of nanofluids in a microchannel using temperature nanosensors. Dissertation, Texas A&M University, College Station

    Google Scholar 

  • Zhou S-Q, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92: 093123–093123–093123

    Google Scholar 

  • Zhou L-P, Wang B-X, Peng X-F, Du X-Z, Yang Y-P (2009) On the specific heat capacity of cuo nanofluid. Adv Mech Eng 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navdeep Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Singh, N., Banerjee, D. (2014). Introduction. In: Nanofins. SpringerBriefs in Applied Sciences and Technology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8532-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8532-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8531-5

  • Online ISBN: 978-1-4614-8532-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics