Skip to main content

New Agents for Multiple Myeloma

  • Chapter
  • First Online:
Book cover Multiple Myeloma

Abstract

The treatment paradigm for multiple myeloma has significantly shifted in the past decade, as a result of new treatment agents, a better refinement of the supportive care approaches, a deeper understanding of the disease biology, and risk stratification-based approaches to treatment of myeloma. However, a relatively small proportion of patients are able to obtain long-term disease control with any of these treatment approaches, with the majority relapsing after various treatments and eventually becoming refractory to all available options. Hence it is imperative, we continue to work on developing newer treatments that represent improved versions of available drug classes as well as newer classes of drugs. In addition, there has been significant focus on developing new combinations of existing as well as novel therapeutic agents. In the current chapter, we will examine the new drugs that have been recently approved as well as those that are currently in clinical trials. Broadly, these drugs can be classified into those belonging to currently used classes of drugs, and new drug classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verhelle D, Corral LG, Wong K, et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res. 2007;67(2):746–55.

    Article  PubMed  CAS  Google Scholar 

  2. Galustian C, Meyer B, Labarthe MC, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother. 2009;58(7):1033–45.

    Article  PubMed  CAS  Google Scholar 

  3. Schey SA, Fields P, Bartlett JB, et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol. 2004;22(16):3269–76.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson G, Gries M, Kurihara N, et al. Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood. 2006;107(8): 3098–105.

    Article  PubMed  CAS  Google Scholar 

  5. Ferguson GD, Jensen-Pergakes K, Wilkey C, et al. Immunomodulatory drug CC-4047 is a cell-type and stimulus-selective transcriptional inhibitor of cyclooxygenase 2. J Clin Immunol. 2007;27(2):210–20.

    Article  PubMed  CAS  Google Scholar 

  6. Streetly MJ, Gyertson K, Daniel Y, Zeldis JB, Kazmi M, Schey SA. Alternate day pomalidomide retains anti-myeloma effect with reduced adverse events and evidence of in vivo immunomodulation. Br J Haematol. 2008;141(1):41–51.

    Article  PubMed  CAS  Google Scholar 

  7. Streetly M, Stewart O, Gyertson K, Kazmi MA, Schey S. Pomalidomide monotherapy for relapsed myeloma is associated with excellent responses and prolonged progression free and overall survival. ASH Annu Meet Abstr. 2009;114(22):3878.

    Google Scholar 

  8. Lacy MQ, Hayman SR, Gertz MA, et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol. 2009;27(30):5008–14.

    Article  PubMed  CAS  Google Scholar 

  9. Lacy MQ, Hayman SR, Gertz MA, et al. Pomalidomide (CC4047) plus low dose dexamethasone (Pom/dex) is active and well tolerated in lenalidomide refractory multiple myeloma (MM). Leukemia. 2010;24(11): 1934–9.

    Article  PubMed  CAS  Google Scholar 

  10. Short KD, Rajkumar SV, Larson D, et al. Incidence of extramedullary disease in patients with multiple myeloma in the era of novel therapy, and the activity of pomalidomide on extramedullary myeloma. Leukemia. 2011;25(6):906–8.

    Article  PubMed  CAS  Google Scholar 

  11. Lacy M, Mandrekar S, Gertz MAA, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of two dosing strategies in dual-refractory disease. ASH Annu Meet Abstr. 2010; 116(21):863.

    Google Scholar 

  12. Richardson PG, Siegel D, Baz R, et al. A phase I/II multi-center, randomized, open label dose escalation study to determine the maximum tolerated dose, safety, and efficacy of pomalidomide alone or in combination with low-dose dexamethasone in patients with relapsed and refractory multiple myeloma who have received prior treatment that includes lenalidomide and bortezomib. ASH Annu Meet Abstr. 2010;116(21):864.

    Google Scholar 

  13. Leleu X, Attal M, Moreau P, et al. Phase II study of 2 modalities of pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. IFM 2009-02. ASH Annu Meet Abstr. 2010;116(21):859.

    Google Scholar 

  14. Kuhn DJ, Chen Q, Voorhees PM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110(9): 3281–90.

    Article  PubMed  CAS  Google Scholar 

  15. Kuhn DJ, Orlowski RZ, Bjorklund CC. Second generation proteasome inhibitors: carfilzomib and immunoproteasome-specific inhibitors (IPSIs). Curr Cancer Drug Targets. 2011;11(3):285–95.

    Article  PubMed  CAS  Google Scholar 

  16. O’Connor OA, Stewart AK, Vallone M, et al. A phase I dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res. 2009;15(22):7085–91.

    Article  PubMed  Google Scholar 

  17. Parlati F, Lee SJ, Aujay M, et al. Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood. 2009;114(16):3439–47.

    Article  PubMed  CAS  Google Scholar 

  18. Sacco A, Aujay M, Morgan B, et al. Carfilzomib-dependent selective inhibition of the chymotrypsin-like activity of the proteasome leads to antitumor activity in Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2011;17(7):1753–64.

    Article  PubMed  CAS  Google Scholar 

  19. Alsina M, Trudel S, Furman RR, et al. A phase I single-agent study of twice-weekly consecutive-day dosing of the proteasome inhibitor carfilzomib in patients with relapsed or refractory multiple myeloma or lymphoma. Clin Cancer Res. 2012;18(17):4830–40.

    Article  PubMed  CAS  Google Scholar 

  20. Jagannath S, Vij R, Stewart AK, et al. An open-label single-arm pilot phase II study (PX-171-003-A0) of low-dose, single-agent carfilzomib in patients with relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leuk. 2012;12(5):310–8.

    Article  PubMed  CAS  Google Scholar 

  21. Siegel DS, Martin T, Wang M, et al. A phase II study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120(14):2817–25.

    Article  PubMed  CAS  Google Scholar 

  22. Vij R, Siegel DS, Jagannath S, et al. An open-label, single-arm, phase II study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol. 2012;158(6):739–48.

    Article  PubMed  CAS  Google Scholar 

  23. Vij R, Wang M, Kaufman JL, et al. An open-label, single-arm, phase II (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood. 2012;119(24):5661–70.

    Article  PubMed  Google Scholar 

  24. Kumar S, Bensinger WI, Reeder CB, et al. Weekly dosing of the investigational oral proteasome inhibitor MLN9708 in patients with relapsed and/or refractory multiple myeloma: results from a phase I dose-escalation study. ASH Annu Meet Abstr. 2011;118(21):816.

    Google Scholar 

  25. Richardson PG, Baz R, Wang L, et al. Investigational agent MLN9708, an oral proteasome inhibitor, in patients (Pts) with relapsed and/or refractory multiple myeloma (MM): results from the expansion cohorts of a phase I dose-escalation study. ASH Annu Meet Abstr. 2011;118(21):301.

    Google Scholar 

  26. Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–37.

    Article  PubMed  CAS  Google Scholar 

  27. Jakubowiak AJ, Benson Jr DM, Bensinger W, et al. Elotuzumab in combination with bortezomib in patients with relapsed/refractory multiple myeloma: updated results of a phase I study. ASH Annu Meet Abstr. 2010;116(21):3023.

    Google Scholar 

  28. Lonial S, Vij R, Harousseau J-L, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in patients with relapsed/refractory multiple myeloma: interim results of a phase I study. ASH Annu Meet Abstr. 2010;116(21):1936.

    Google Scholar 

  29. Tai Y-T, de Weers M, Li X-F, et al. Daratumumab, a novel potent human anti-CD38 monoclonal antibody, induces significant killing of human multiple myeloma cells: therapeutic implication. ASH Annu Meet Abstr. 2009;114(22):608.

    Google Scholar 

  30. Groen RW, van der Veer M, Hofhuis FM, et al. In vitro and in vivo efficacy of cd38 directed therapy with daratumumab in the treatment of multiple myeloma. ASH Annu Meet Abstr. 2010;116(21):3058.

    Google Scholar 

  31. Plesner T, Lokhorst H, Gimsing P, Nahi H, Lisby S, Richardson PG. Daratumumab, a CD38 monoclonal antibody in patients with multiple myeloma—data from a dose-escalation phase I/II study. ASH Annu Meet Abstr. 2012;120(21):73.

    Google Scholar 

  32. Rossi J-F, Manges RF, Sutherland HJ, et al. Preliminary results of CNTO 328, an anti-interleukin-6 monoclonal antibody, in combination with bortezomib in the treatment of relapsed or refractory multiple myeloma. Blood. 2008;112(11):867.

    Google Scholar 

  33. Ocio EM, Mateos VM, Maiso P, Pandiella A, San-Miguel JF. New drugs in multiple myeloma: mechanism of action and phase I/II clinical findings. Lancet Oncol. 2008;9:1157–65.

    Article  PubMed  CAS  Google Scholar 

  34. Mahindra A, Cirstea D, Raje N. Novel therapeutic targets for multiple myeloma. Future Oncol. 2010;6(3): 407–18.

    Article  PubMed  CAS  Google Scholar 

  35. Richardson PG, Mitslades CS, Colson K, et al. Final results of a phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Blood. 2007;110:Abstract 1179.

    Google Scholar 

  36. Galli M, Salmoiraghi S, Golay J, et al. A phase II multiple dose clinical trial of histone deactylase inhibitor5 ITF2357 in patients with relapsed or progressive multiple myeloma: preliminary results. Blood. 2007; 2007(110):Abstract 1175.

    Google Scholar 

  37. Wolf JL, Siegel D, Matous J, et al. A phase II study of oral panobinostat (LBH589) in adult patients with advanced refractory multiple myeloma. Blood. 2008;112(11):2774.

    Google Scholar 

  38. Niesvizky R, Ely S, Mark T, et al. Phase II trial of the histone deacetylase inhibitor romidepsin for the treatment of refractory multiple myeloma. Cancer. 2011;117(2):336–42.

    Article  PubMed  CAS  Google Scholar 

  39. Richardson P, Mitsiades C, Colson K, et al. Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma. 2008;49(3):502–7.

    Article  PubMed  CAS  Google Scholar 

  40. Badros A, Burger AM, Philip S, et al. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res. 2009;15(16):5250–7.

    Article  PubMed  CAS  Google Scholar 

  41. Weber D, Badros AZ, Jagannath S, et al. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: early clinical experience. Blood. 2008;112(11):871.

    Google Scholar 

  42. San-Miguel JF, Sezer O, Siegel D, et al. A phase IB, multi-center, open-label dose-escalation study of oral panobinostat (LBH589) and I.V. bortezomib in patients with relapsed multiple myeloma. ASH Annu Meet Abstr. 2009;114(22):3852.

    Google Scholar 

  43. Mitsiades CS, Mitsiades N, McMullin CJ, et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006;107(3):1092–100.

    Article  PubMed  CAS  Google Scholar 

  44. Richardson PG, Chanan-Khan AA, Alsina M, et al. Tanespimycin monotherapy in relapsed multiple myeloma: results of a phase I dose-escalation study. Br J Haematol. 2010;150(4):438–45.

    PubMed  CAS  Google Scholar 

  45. Richardson PG, Chanan-Khan AA, Lonial S, et al. Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase I/II study. Br J Haematol. 2011;153(6):729–40.

    Article  PubMed  CAS  Google Scholar 

  46. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4(5): 335–48.

    Article  PubMed  CAS  Google Scholar 

  47. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22(14):2954–63.

    Article  PubMed  CAS  Google Scholar 

  48. Kharas MG, Fruman DA. ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res. 2005;65(6):2047–53.

    Article  PubMed  CAS  Google Scholar 

  49. Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res. 2000;60(23):6763–70.

    PubMed  CAS  Google Scholar 

  50. Ge NL, Rudikoff S. Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood. 2000;96(8):2856–61.

    PubMed  CAS  Google Scholar 

  51. Hideshima T, Chauhan D, Hayashi T, et al. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther. 2002;1(7): 539–44.

    PubMed  CAS  Google Scholar 

  52. Hideshima T, Catley L, Yasui H, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006;107(10): 4053–62.

    Article  PubMed  CAS  Google Scholar 

  53. Richardson P, Lonial S, Jakubowiak A, et al. Multi-center phase II study of perifosine (KRX-0401) alone and in combination with dexamethasone (dex) for patients with relapsed or relapsed/refractory multiple myeloma (MM): promising activity as combination therapy with manageable toxicity. ASH Annu Meet Abstr. 2007;110(11):1164.

    Google Scholar 

  54. Richardson P, Wolf J, Jakubowiak A, et al. Phase I/II results of a multicenter trial of perifosine (KRX-0401) + bortezomib in patients with relapsed or relapsed/refractory multiple myeloma who were previously relapsed from or refractory to bortezomib. Blood. 2008;112(11):870.

    Google Scholar 

  55. Jakubowiak AJ, Richardson PG, Zimmerman TM, et al. Final phase I results of perifosine in combination with lenalidomide and dexamethasone in patients with relapsed or refractory multiple myeloma (MM). ASH Annu Meet Abstr. 2010;116(21):3064.

    Google Scholar 

  56. Brunn GJ, Hudson CC, Sekulic A, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997;277(5322):99–101.

    Article  PubMed  CAS  Google Scholar 

  57. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998;95(4):1432–7.

    Article  PubMed  CAS  Google Scholar 

  58. Ma WW, Adjei AA. Novel agents on the horizon for cancer therapy. CA Cancer J Clin. 2009;59:111–37.

    Article  PubMed  Google Scholar 

  59. Frost P, Moatamed F, Hoang B, et al. In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood. 2004;104(13):4181–7.

    Article  PubMed  CAS  Google Scholar 

  60. Stromberg T, Dimberg A, Hammarberg A, et al. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood. 2004; 103(8):3138–47.

    Article  PubMed  Google Scholar 

  61. Lonial S, Cohen A, Zonder J, et al. The novel KSP inhibitor ARRY-520 demonstrates single-agent activity in refractory myeloma: results from a phase II trial in patients with relapsed/refractory multiple myeloma (MM). ASH Annu Meet Abstr. 2011;118(21):2935.

    Google Scholar 

  62. Shah JJ, Cohen AD, Zonder JA, et al. Phase I trial of ARRY-520 in relapsed/refractory multiple myeloma (RR MM). J Clin Oncol. 2010;28(15_Suppl):8132.

    Google Scholar 

  63. Shah JJ, Zonder J, Cohen A, et al. ARRY-520 shows durable responses in patients with relapsed/refractory multiple myeloma in a phase I dose-escalation study. ASH Annu Meet Abstr. 2011;118(21):1860.

    Google Scholar 

  64. Shah JJ, Zonder JA, Cohen A, et al. The novel KSP inhibitor ARRY-520 is active both with and without low-dose dexamethasone in patients with multiple myeloma refractory to bortezomib and lenalidomide: results from a phase II study. ASH Annu Meet Abstr. 2012;120(21):449.

    Google Scholar 

  65. Kumar SK, LaPlant BR, Chng WJ, et al. Phase I/II trial of a novel CDK inhibitor dinaciclib (SCH727965) in patients with relapsed multiple myeloma demonstrates encouraging single agent activity. ASH Annu Meet Abstr. 2012;120(21):76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaji Kumar M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Mayo Foundation for Medical Education and Research

About this chapter

Cite this chapter

Kumar, S., McCurdy, A. (2014). New Agents for Multiple Myeloma. In: Gertz, M., Rajkumar, S. (eds) Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8520-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8520-9_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8519-3

  • Online ISBN: 978-1-4614-8520-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics