Skip to main content

Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection: Challenges and Methodologies

  • Chapter
  • First Online:
Book cover Abdomen and Thoracic Imaging

Abstract

This chapter overviews one of the most critical problems in urology, namely detection of acute renal transplant rejection. Developing an effective, fast, and accurate computer-aided diagnosis (CAD) system for early detection of acute renal rejection is of great clinical importance for the management of these patients. For this reason, CAD systems for early detection of renal transplant rejection have been investigated in a huge number of research studies using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging. A typical CAD system for kidney diagnosis consists of a set of processing steps including, but not limited to, image registration to account for kidney motion, segmentation of the kidney and/or its compartments (e.g., cortex, medulla), construction of agent kinetic curves, functional parameters estimation, and diagnosis and assessment of the kidney status. Due to the widespread popularity of US and MRI, this chapter overviews the current state-of-the-art CAD systems that have been developed for kidney diagnosis using these two image modalities. In addition, the chapter addresses several challenges that researchers face in developing efficient, fast, and reliable CAD systems for early detection of kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nankivell BJ, Alexander SI (2010) Rejection of the kidney allograft. North Eng J Med 363(15):1451–1562

    Article  CAS  Google Scholar 

  2. USRDS (2010) US Renal Data System Annual Data Report 2011: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda

    Google Scholar 

  3. Park SB, Kim JK, Cho K-S (2007) Complications of renal transplantation ultrasonographic evaluation. J Ultras Med 26(5):615–633

    Google Scholar 

  4. Akbar SA, Jafri SZH, Amendola MA, Madrazo BL, Salem R, Bis KG (2005) Complications of renal transplantation. Radiographics 25(5):1335–1356

    Article  PubMed  Google Scholar 

  5. Höhnke C, Abendroth D, Schleibner S, Land W (1987) Vascular complications in 1,200 kidney transplantations. Trans Proc 19(5):36–91

    Google Scholar 

  6. Scott M, Sells R (1988) Primary adenocarcinoma in a transplanted cadaveric kidney. Transplantation 46(1):157–158

    Article  PubMed  CAS  Google Scholar 

  7. Mathew T (1988) Recurrence of disease following renal transplantation. Am J Kidney Diseases: Official J Nat Kidney Found 12(2):85–96

    CAS  Google Scholar 

  8. Brown ED, Chen MY, Wolfman NT, Ott DJ, Watson NE (2000) Complications of renal transplantation: Evaluation with US and radionuclide imaging. Radiographics 20(3):607–622

    Article  PubMed  CAS  Google Scholar 

  9. Baxter G (2001) Ultrasound of renal transplantation. Clin Radiol 56(10):802–818

    Article  PubMed  CAS  Google Scholar 

  10. Pirsch JD, Ploeg RJ, Gange S, D’Alessandro AM, Knechtle SJ, Sollinger HW, Kalayoglu M, Belzer FO (1996) Determinants of graft survival after renal transplantation. Transplantation 61(11):1581–1586

    Article  PubMed  CAS  Google Scholar 

  11. Isoniemi HM, Krogerus L, von Willebrand E, Taskinen E, Ahonen J, Häyry P, et al. (1992) Histopathological findings in well-functioning, long-term renal allografts. Kidney Intern 41(1):155–160

    Article  CAS  Google Scholar 

  12. Grabner A, Kentrup D, Schnöckel U, Schäfers M, Reuter S (2013) Non-invasive diagnosis of acute renal allograft rejection- Special focus on gamma scintigraphy and positron emission tomography. In: Current issues and future direction in kidney transplantation, ch. 4. In Tech, New York

    Google Scholar 

  13. Matas AJ, Gillingham KJ, Payne WD, Najarían JS (1994) The impact of an acute rejection episode on long-term renal allograft survival (t1/2) 1, 2. Transplantation 57(6):857–859

    Article  PubMed  CAS  Google Scholar 

  14. Wu O, Levy AR, Briggs A, Lewis G, Jardine A (2009) Acute rejection and chronic nephropathy: A systematic review of the literature. Transplantation 87(9):1330–1339

    Google Scholar 

  15. “Creatinine clearance,” http://www.britannica.com/EBchecked/topic/1346079/creatinine-clearance

  16. Bennett H, Li D (1997) MR imaging of renal function. Magnet Reson Imag Clin North Am (1):5–18

    Google Scholar 

  17. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, Hostetter T, Levey AS, Panteghini M, Welch M, Eckfeldt JH (2006) Recommendations for improving serum creatinine measurement: A report from the laboratory working group of the national kidney disease education program. Clin Chem 52(1):5–18

    Article  PubMed  CAS  Google Scholar 

  18. Yang D, Ye Q, Williams M, Sun Y, Hu TC-C, Williams DS, Moura JM, Ho C (2001) USPIO-enhanced dynamic MRI: evaluation of normal and transplanted rat kidneys. Magnet Reson Med 46(6):1152–1163

    Article  CAS  Google Scholar 

  19. Giele ELW (2002) Computer methods for semi-automatic MR renogram determination. Technische Universiteit Eindhoven

    Google Scholar 

  20. Taylor A, Nally JV (1995) Clinical applications of renal scintigraphy. Am J Roentgenol 164(1):31–41

    Article  Google Scholar 

  21. Heaf J, Iversen J (2000) Uses and limitations of renal scintigraphy in renal transplantation monitoring. Eur J Nucl Med 27(7):871–879

    Article  PubMed  CAS  Google Scholar 

  22. Kolofousi C, Stefanidis K, Cokkinos DD, Karakitsos D, Antypa E, Piperopoulos P (2012) Ultrasonographic features of kidney transplants and their complications: An imaging review. ISRN Radiol 2013

    Google Scholar 

  23. Kramann R, Frank D, Brandenburg VM, Heussen N, Takahama J, Krüger T, Riehl J, Floege J (2012) Prognostic impact of renal arterial resistance index upon renal allograft survival: The time point matters. Nephrol Dialys Transplant 27(10):3958–3963

    Article  Google Scholar 

  24. Cosgrove DO, Chan KE (2008) Renal transplants: What ultrasound can and cannot do. Ultrasound Quart 24(2):77–87

    Article  Google Scholar 

  25. Sebastià C, Quiroga S, Boyé R, Cantarell C, Fernandez-Planas M, Alvarez A (2001) Helical CT in renal transplantation: Normal findings and early and late complications. Radiographics 21(5):1103–1117

    Article  PubMed  Google Scholar 

  26. Michaely H, Herrmann K, Nael K, Oesingmann N, Reiser M, Schoenberg S (2007) Functional renal imaging: Nonvascular renal disease. Abdom Imag 32(1):1–16

    Article  CAS  Google Scholar 

  27. Grenier N, Basseau F, Ries M, Tyndal B, Jones R, Moonen C (2003) Functional MRI of the kidney. Abdom Imag 28(2):164–175

    Article  CAS  Google Scholar 

  28. Choyke P, Frank J, Girton M, Inscoe S, Carvlin M, Black J, Austin H, Dwyer A (1989) Dynamic Gd-DTPA-enhanced MR imaging of the kidney: Experimental results. Radiology 170(3):713–720

    PubMed  CAS  Google Scholar 

  29. Khalifa F, El-Baz A, Gimel’farb G, El-Ghar MA (2010) Non-invasive image-based approach for early detection of acute renal rejection. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’10), Beijing, 20–24 September 2010, pp 10–18

    Google Scholar 

  30. El-Baz A, Beache GM, Gimel’farb G, Suzuki K, Okada K, Elnakib A, Soliman A, Abdollahi B (2013) Computer-aided diagnosis systems for lung cancer: Challenges and methodologies. Int J Biomed Imag 2013

    Google Scholar 

  31. Kimber DC, Gray CE, Stackpole CE, Miller MA, Drakontides AB, Leavell LC (1977) Kimber-Gray-Stackpole’s anatomy and physiology. Macmillan, New York

    Google Scholar 

  32. “Your kidneys and how they work,” http://kidney.niddk.nih.gov/kudiseases/pubs/yourkidneys/.

  33. Kapit W, Macey R, Meisami E (1987) The physiology coloring book. 2nd edn. C. M. Wilson and Ed.HarperCollins Publishers, Benjamin Cummings, San Fransisco

    Google Scholar 

  34. Szolar DH, Preidler K, Ebner F, Kammerhuber F, Horn S, Ratschek M, Ranner G, Petritsch P, Horina JH (1997) Functional magnetic resonance imaging of human renal allografts during the post-transplant period: Preliminary observations. Magnet Reson Imag 15(7):727–735

    Article  CAS  Google Scholar 

  35. Heine GH, Gerhart MK, Ulrich C, Köhler H, Girndt M (2005) Renal Doppler resistance indices are associated with systemic atherosclerosis in kidney transplant recipients. Kidney Int 68(2):878–885

    Article  PubMed  Google Scholar 

  36. Tublin ME, Bude RO, Platt JF (2003) The resistive index in renal Doppler sonography: Where do we stand? Am J Roentgenol 180(4):885–892

    Article  Google Scholar 

  37. Jimenez C, Lopez MO, Gonzalez E, Selgas R (2009) Ultrasonography in kidney transplantation: Values and new developments. Transplant Rev 23(4):209–213

    Article  Google Scholar 

  38. Kirkpantur A, Yilmaz R, Baydar DE, Aki T, Cil B, Arici M, Altun B, Erdem Y, Erkan I, Bakkaloglu M, Yasavul U, Turgan C (2008) Utility of the Doppler ultrasound parameter, resistive index, in renal transplant histopathology. Transplant Proc 40(1):104–106

    Google Scholar 

  39. Seiler S, Colbus SM, Lucisano G, Rogacev KS, Gerhart MK, Ziegler M, Fliser D, Heine GH (2012) Ultrasound renal resistive index is not an organ-specific predictor of allograft outcome. Nephrol Dialysis Transplant 27(8):3315–3320

    Article  Google Scholar 

  40. Saracino A, Santarsia G, Latorraca A, Gaudiano V (2006) Early assessment of renal resistance index after kidney transplant can help predict long-term renal function. Nephrol Dialysis Transplant 21(10):2916–2920

    Article  Google Scholar 

  41. Khosroshahi HT, Tarzamni M, Oskuii RA (2005) Doppler ultrasonography before and 6 to 12 months after kidney transplantation. Transplant Proc 37(7):2976–2981

    Article  PubMed  Google Scholar 

  42. Krejčí K, Zadražil J, Tichỳ T, Al-Jabry S, Horčička V, Štrebl P, Bachleda P (2009) Sonographic findings in borderline changes and subclinical acute renal allograft rejection. Eur J Radiol 71(2):288–295

    Article  PubMed  Google Scholar 

  43. Damasio M, Cittadini G, Rolla D, Massarino F, Stagnaro N, Gherzi M, Paoletti E, Derchi L (2013) Ultrasound findings in dual kidney transplantation. La Radiologia Medica 118(1):14–22

    Article  PubMed  CAS  Google Scholar 

  44. Chudek J, Kolonko A, Krol R, Ziaja J, Cierpka L, Wicek A (2006) The intrarenal vascular resistance parameters measured by duplex Doppler ultrasound shortly after kidney transplantation in patients with immediate, slow, and delayed graft function. Transplant Proc 38(1):42–45

    Article  PubMed  CAS  Google Scholar 

  45. Fischer T, Filimonow S, Dieckhöfer J, Slowinski T, Mühler M, Lembcke A, Budde K, Neumayer H-H, Ebeling V, Giessing M, Thomas A, Morgera S (2006) Improved diagnosis of early kidney allograft dysfunction by ultrasound with echo enhancer: A new method for the diagnosis of renal perfusion. Nephrol Dialys Transplant 21(10):2921–2929

    Article  Google Scholar 

  46. Benozzi L, Cappelli G, Granito M, Davoli D, Favali D, Montecchi M, Grossi A, Torricelli P, Albertazzi A (2009) Contrast-enhanced sonography in early kidney graft dysfunction. Transplant Proc 41(4):1214–1215

    Article  PubMed  CAS  Google Scholar 

  47. Mansfield P (2004) Snapshot magnetic resonance imaging (nobel lecture). Angew Chem Int Ed 43(41):5456–5464

    Article  CAS  Google Scholar 

  48. Prasad PV (2006) Functional MRI of the kidney: Tools for translational studies of pathophysiology of renal disease. Am J Physiol: Renal Physiol 290(5):958–974

    Article  Google Scholar 

  49. Collins DJ, Padhani AR (2004) Dynamic magnetic resonance imaging of tumor perfusion. IEEE Eng Med Biol Mag 23(5):65–83

    Article  PubMed  Google Scholar 

  50. Bokacheva L, Rusinek H, Zhang JL, Lee VS (2008) Assessment of renal function with dynamic contrast-enhanced MR imaging. Mag Reson Imag Clin North Am 16(4):597–611

    Article  Google Scholar 

  51. Von Schulthess GK, Kuoni W, Gerig G, Duewell S, Krestin G (1991) Semiautomated ROI analysis in dynamic MRI studies, Part II: Application to renal function examination. J Comput Assist Tomogr 15(5):733–741

    Article  Google Scholar 

  52. Gerig G, Kikinis R, Kuon W, van Schulthess GK, Kübler O (1992) Semiautomated ROI analysis in dynamic MRI studies: Part I: Image analysis tools for automatic correction of organ displacements. IEEE Trans Image Process 11(2):221–232

    Article  CAS  Google Scholar 

  53. Yim PJ, Marcos HB, Choyke PL, McAuliffe M, McGarry D, Heaton I (2001) Registration of time-series contrast enhanced magnetic resonance images for renography. In: Proceedings of the IEEE symposium on computer-based medical systems (CMBS’01), vol 1, Bethesda, 24–26 July 2001. IEEE, Piscataway, pp 516–520

    Google Scholar 

  54. de Priester JA, Kessels AG, Giele EL, Den Boer JA, Christiaans ML, Hasman A, Van Engelshoven JA (2001) MR renography by semiautomated image analysis: Performance in renal transplant recipients. J Mag Reson Imag 14(2):134–140

    Article  Google Scholar 

  55. Giele EW, de Priester JA, Blom JA, den Boer JA, van Engelshoven JA, Hasman A, Geerlings M (2001) Movement correction of the kidney in dynamic MRI scans using FFT phase difference movement detection. J Mag Reson Imag 14(6):741–749

    Article  CAS  Google Scholar 

  56. Krestin GP (1994) Magnetic resonance imaging of the kidneys: Current status. Magnet Resonan Quart 10(1):2–21

    CAS  Google Scholar 

  57. Sun Y (2004) Registration and segmentation in perfusion MRI: Kidneys and hearts. Ph.D. dissertation, Carnegie Mellon University, Pittsburg

    Google Scholar 

  58. Giele E (2002) Computer methods for semi-automatic MR renogram determination. Ph.D. dissertation, Eindhoven University of Technology, Eindhoven

    Google Scholar 

  59. Koh HK, Shen W, Shuter B, Kassim AA (2006) Segmentation of kidney cortex in MRI studies using a constrained morphological 3D H-maxima transform. In: Proceedings of international conference on control, automation, robotics and vision (ICARCV’06), Singapore, 26–29 December 2006. IEEE, Piscataway, pp 1–5

    Google Scholar 

  60. Sun Y, Moura JM, Yang D, Ye Q, Ho C (2002) Kidney segmentation in MRI sequences using temporal dynamics. In: Proceedings of IEEE international symposium on biomedical imaging: from Nano to Macro (ISBI’02), Washington, DC, 7–10 July 2002, pp. 98–101

    Google Scholar 

  61. Sun Y, Yang D, Ye Q, Williams M, Moura JMF, Boada F, Liang Z-P, Ho C (2003) Improving spatiotemporal resolution of USPIO-enhanced dynamic imaging of rat kidneys. Magnet Resonan Imag 21(6):593–598

    Article  Google Scholar 

  62. Sun Y, Jolly MP, Moura JMF (2004) Integrated registration of dynamic renal perfusion MR images. In: Proceedings of IEEE international conference on image processing (ICIP’04), vol 3, Singapore, 24–27 October 2004, pp 1923–1926

    Google Scholar 

  63. Sun Y, Moura JMF, Ho C (2004) Subpixel registration in renal perfusion MR image sequence. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro (ISBI’04), Arlington, 15–18 April 2004, pp 700–703

    Google Scholar 

  64. Song T, Lee VS, Rusinek H, Kaur M, Laine AF (2005a) Automatic 4-D registration in dynamic MR renography. In: Proceedings of IEEE conference on engineering in medicine and biology society (EMBS’05), Shanghai, 1–4 September 2005, pp 3067–3070

    Google Scholar 

  65. Song T, Lee VS, Rusinek H, Kaur M, Laine AF (2005b) Automatic 4-D registration in dynamic MR renography based on over-complete dyadic wavelet and Fourier transforms. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’05), Palm Springs, 26–29 October 2005, pp 205–213

    Google Scholar 

  66. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proces 10(2):266–277

    Article  CAS  Google Scholar 

  67. Kim S (2005) A hybrid level set approach for efficient and reliable image segmentation. In: Proceedings of IEEE international symposium on signal processing and information technolology, Athens, 21 December 2005, pp 743–748

    Google Scholar 

  68. Kim S, Lim H (2005) A hybrid level set segmentation for medical imagery. In: Proceedings of IEEE nuclear science symposium conference record, vol 3, Puerto Rico, 23–29 October 2005, pp 1790–1794

    Google Scholar 

  69. Lie J, Lysaker M, Tai X-C (2006) A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans Image Process 15(5):1171–1181

    Article  PubMed  Google Scholar 

  70. Yan P, Kassim AA, Shen W, Shah M (2009) Modeling interaction for segmentation of neighboring structures. IEEE Trans Inform Technol Biomed 13(2):252–262

    Article  Google Scholar 

  71. Abdelmunim HE, Farag AA, Miller W, AboelGhar M (2008) A kidney segmentation approach from DCE-MRI using level sets. In: Computer vision and pattern recognition workshops, (CVPRW’08), vol 1, Anchorage, 23–28 June 2008, pp 1–6

    Google Scholar 

  72. Yuksel SE, El-Baz A, Farag AA, El-Ghar M, Eldiasty T, Ghoneim MA (2007) A kidney segmentation framework for dynamic contrast enhanced magnetic resonance imaging. J Vibrat Contrl 13(9–10):1505–1516

    Article  Google Scholar 

  73. Yuksel SE, El-Baz A, Farag AA (2006) A kidney segmentation framework for dynamic contrast enhanced magnetic resonance imaging. In: Proceedings of international symposium on mathematical methods in engineering, (MME’06), Ankara, 27–29 April 2006, pp 55–64

    Google Scholar 

  74. El-Baz A, Mohamed RM, Farag AA, Gimel’farb G (2005) Unsupervised segmentation of multi-modal images by a precise approximation of individual modes with linear combinations of discrete Gaussians. In: Computer vision and pattern recognition workshops (CVPRW’2005), San Diego, June 20–26. IEEE Computer Society, Piscataway, pp 54–54

    Google Scholar 

  75. El-Baz A (2006) Novel stochastic models for medical image analysis. Ph.D. dissertation, University of Louisville, Louisville, KY

    Google Scholar 

  76. El-Baz A, Gimel’farb G (2007) EM based approximation of empirical distributions with linear combinations of discrete Gaussians. In: Proceedings of IEEE international conference on image processing (ICIP’07), vol 4, San Antonio, 16–19 September 2007, pp 373–376

    Google Scholar 

  77. El-Baz A, Gimel’farb G, Kumar V, Falk R, El-Ghar MA (2009) 3D joint Markov-Gibbs model for segmenting the blood vessels from MRA. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro (ISBI’09), pp 1366–1369

    Google Scholar 

  78. El-Baz A, Gimelfarb G, Falk R, El-Ghar MA, Kumar V, Heredia D (2009) A novel 3D joint Markov-Gibbs model for extracting blood vessels from PC–MRA images. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’09), London, 20–24 September 2009, pp 943–950

    Google Scholar 

  79. El-Baz A, Gimel’farb G (2011) Accurate modeling of marginal signal distributions in 2D/3D images. In: El-Baz A, Acharya R, Mirmedhdi M, Suri JS (eds) Handbook of multi modality state-of-the-art medical image segmentation and registration methodologies, vol 1, chap 7. Springer, New York, pp 189–213

    Google Scholar 

  80. El-Baz A, Gimelfarb G, Elnakib A, Falk R, El-Ghar MA (2011) Fast accurate unsupervised segmentation of 3D magnetic resonance angiography. In: Atherosclerosis disease management, chap 14. Springer, New York, pp 411–432

    Google Scholar 

  81. El-Baz A, Elnakib A, Khalifa F, El-Ghar MA, McClure P, Soliman A, Gimel’farb G (2012) Precise segmentation of 3-D magnetic resonance angiography. IEEE Trans Biomed Eng 59(7):2019–2029

    Article  PubMed  Google Scholar 

  82. El-Baz A, Gimel’farb G (2008a) Robust image segmentation using learned priors. In: Proceedings of IEEE international conference on computer vision (ICCV’09), Kyoto, September 27–October 4, 2008. IEEE, Piscataway, pp 857–864

    Google Scholar 

  83. El-Baz A, Gimel’farb G (2008b) Image segmentation with a parametric deformable model using shape and appearance priors. In: Proceedings of IEEE international conference on computer vision and pattern recognition (CVPR’08), Anchorage, 24–26 June 2008, pp 1–8

    Google Scholar 

  84. El-Baz A, Gimel’farb G (2009) Robust medical images segmentation using learned shape and appearance models. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’09), London, September 20–24. Springer, Berlin, pp 281–288

    Google Scholar 

  85. Khalifa F, Beache GM, El-Ghar MA, El-Diasty T, Gimel’farb G, Kong M, El-Baz A (2013) Dynamic contrast-enhanced MRI-based early detection of acute renal transplant rejection. IEEE Trans Med Imag 32(10):1910–1927

    Google Scholar 

  86. Farag A, El-Baz A, Gimel’farb G (2006) Precise segmentation of multimodal images. IEEE Trans Image Proces 15(4):952–968

    Article  Google Scholar 

  87. El-Baz A, Farag AA, Gimel’farb G (2005) Iterative approximation of empirical grey-level distributions for precise segmentation of multimodal images. EURASIP J Appl Signal Process 2005:1969–1983

    Article  Google Scholar 

  88. El-Baz A, Farag A, Ali A, Gimelfarb G, Casanova M (2006) A framework for unsupervised segmentation of multi-modal medical images. In: Computer vision approaches to medical image analysis (CVAMIA’06). Springer, Berlin, pp 120–131

    Google Scholar 

  89. Khalifa F, Beache GM, El-Baz A, Gimel’farb G (2010) Shape-appearance guided level-set deformable model for image segmentation. In: Proceedings of IAPR international conference on pattern recognition (ICPR’10), Istanbul, 23–26 August 2010, pp 4581–4584

    Google Scholar 

  90. Khalifa F, Beache GM, Nitzken M, Gimel’farb G, Giridharan GA, El-Baz A (2011) Automatic analysis of left ventricle wall thickness using short-axis cine CMR images. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro (ISBI’11), Chicago, 30 March–2 April 2011, pp 1306–1309

    Google Scholar 

  91. Khalifa F, Gimel’farb G, El-Ghar MA, Sokhadze G, Manning S, McClure P, Ouseph R, El-Baz A (2011) A new deformable model-based segmentation approach for accurate extraction of the kidney from abdominal CT images. In: Proceedings of IEEE international conference on image processing (ICIP’11), Brussels, 11–14 September 2011, pp 3393–3396

    Google Scholar 

  92. Khalifa F, Beache GM, Gimel’farb G, Giridharan GA, El-Baz A (2012) Accurate automatic analysis of cardiac cine images. IEEE Trans Biomed Eng 59(2):445–455

    Article  PubMed  Google Scholar 

  93. Khalifa F, Beache GM, Gimel’farb G, El-Baz A (2011) A novel approach for accurate estimation of left ventricle global indexes from short-axis cine MRI. In: Proceedings of IEEE international conference on image processing (ICIP’11), Brussels, 11–14 September 2011, pp 2697–2700

    Google Scholar 

  94. Khalifa F, Elnakib A, Beache GM, Gimel’farb G, El-Ghar MA, Sokhadze G, Manning S, McClure P, El-Baz A (2011) 3D kidney segmentation from CT images using a level set approach guided by a novel stochastic speed function. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’11), Toronto, 18–22 September 2011, pp 587–594

    Google Scholar 

  95. Gloger O, Tönnies KD, Liebscher V, Kugelmann B, Laqua R, Völzke H (2012) Prior shape level set segmentation on multistep generated probability maps of MR datasets for fully automatic kidney parenchyma volumetry. IEEE Trans Med Imag 31(2):312–325

    Article  Google Scholar 

  96. Boykov Y, Lee VS, Rusinek H, Bansal R (2001) Segmentation of dynamic N-D data sets via graph cuts using Markov models. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’01), Utrecht, 14–17 October 2001, pp 1058–1066

    Google Scholar 

  97. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Visison 70(2):109–131

    Article  Google Scholar 

  98. Rusinek H, Boykov Y, Kaur M, Wong S, Bokacheva L, Sajous JB, Huang AJ, Heller S, Lee VS (2007) Performance of an automated segmentation algorithm for 3D MR renography. Magnet Resonance Med 57(6):1159–1167

    Article  Google Scholar 

  99. Ali AM, Farag AA, El-Baz A (2007) Graph cuts framework for kidney segmentation with prior shape constraints. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’07), vol 1, Brisbane, October 29–November 2, pp 384–392

    Google Scholar 

  100. Chevaillier B, Ponvianne Y, Collette J-L, Mandry D, Claudon M, Pietquin O (2008) Functional semi-automated segmentation of renal DCE-MRI sequences. In: Proceedings of IEEE international conference acoustics, speech, and signal processing (ICASSP’08), Las Vegas, March 30–April 4, 2008, pp 525–528

    Google Scholar 

  101. Chevaillier B, Mandry D, Collette J-L, Claudon M, Galloy M-A, Pietquin O (2011) Functional segmentation of renal DCE-MRI sequences using vector quantization algorithms. Neural Process Lett 34(1):71–85

    Article  Google Scholar 

  102. Song T, Lee VS, Rusinek H, Wong S, Laine AF (2006) Four dimensional MR image analysis of dynamic renography. In: Proceedings of IEEE conference on engineering in medicine and biology society (EMBS’06), New York, August 30–September 3, 2006, pp 3134–3137

    Google Scholar 

  103. Zöllner F, Sance R, Rogelj P, Ledesma-Carbayo MJ, Rørvik J, Santos A, Lundervold A (2009) Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput Med Imag Graph 33(3):171–181

    Article  Google Scholar 

  104. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, University of California Press, California, pp 281–297

    Google Scholar 

  105. Li S, Zöllner FG, Merrem AD, Peng Y, Roervik J, Lundervold A, Schad LR (2012) Wavelet-based segmentation of renal compartments in DCE-MRI of human kidney: Initial results in patients and healthy volunteers. Computer Med Imag Graph 36(1):108–118

    Article  Google Scholar 

  106. Yang X, Ghafourian P, Sharma P, Salman K, Martin D, Fei B (2012) Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images. In: Proceedings of SPIE medical imaging 2012: image processing (SPIE’12), vol 8314. SPIE, The International Society for Optical Engineering, Bellingham, pp 1–9

    Google Scholar 

  107. Wang H, Dong L, O’Daniel J, Mohan R, Garden AS, Ang KK, Kuban DA, Bonnen M, Chang JY, Cheung R (2005) Validation of an accelerated demons algorithm for deformable image registration in radiation therapy. Phys Med Biol 50(12):2887–2905

    Article  PubMed  CAS  Google Scholar 

  108. Farag A, El-Baz A, Yuksel S, El-Ghar MA, Eldiasty T (2006) A framework for the detection of acute rejection with dynamic contrast enhanced magnetic resonance imaging. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro (ISBI’06), Arlington, 6–9 April 2006, pp 418–421

    Google Scholar 

  109. El-Baz A, Farag A, Fahmi R, Yuksel S, El-Ghar MA, Eldiasty T (2006) Image analysis of renal DCE MRI for the detection of acute renal rejection. In: Proceedings of IAPR international conference on pattern recognition (ICPR’06), Hong Kong, 20–24 August 2006, pp 822–825

    Google Scholar 

  110. El-Baz A, Farag A, Fahmi R, Yuksel S, Miller W, El-Ghar MA, El-Diasty T, Ghoneim M (2006) A new CAD system for the evaluation of kidney diseases using DCE-MRI. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’06), Copenhagen, 1-6 October 2006, pp 446–453

    Google Scholar 

  111. El-Baz A, Farag AA, Yuksel SE, El-Ghar MEA, Eldiasty TA, Ghoneim MA (2007) Application of deformable models for the detection of acute renal rejection. In: Farag AA, Suri JS (eds) Deformable models, vol 1, chap 10, pp 293–333

    Google Scholar 

  112. El-Baz A, Gimel’farb G, El-Ghar MA (2007) New motion correction models for automatic identification of renal transplant rejection. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’07), Brisbane, October 29–November 2, 2007, pp 235–243

    Google Scholar 

  113. Farag AA, El-Baz A, Gimel’farb G (2004) Precise image segmentation by iterative EM-based approximation of empirical grey level distributions with linear combinations of Gaussians. In: Computer vision and pattern recognition workshops, (CVPRW’04), Washington, DC, 27 June–2 July. IEEE Computer Society, Piscataway, pp 109–109

    Google Scholar 

  114. Farag A, El-Baz A, Gimel’farb G (2004) Density estimation using modified expectation maximization for a linear combination of Gaussians. In: Proceedings of IEEE international conference on image processing (ICIP’04), vol 3, Singapore, 24–27 October 2004, pp 1871–1874

    Google Scholar 

  115. Gimel’farb G, Farag A, El-Baz A (2004) Expectation-maximization for a linear combination of Gaussians. In: Proceedings of IEEE international conference on pattern recognition (ICPR’04), vol 4, Cambridge, 23–26 August 2004, pp 422–425

    Google Scholar 

  116. El-Baz A, Farag A, Gimelfarb G (2005) Cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images. In: Image analysis, Proceedings of the 14 Scandinavian Conference on Image analysis (SCIA'05), Joensuu, June 19–22. Springer, Heidelberg. pp 1128–1137

    Google Scholar 

  117. El-Baz A, Farag AA, Gimelfarb G, Hushek SG (2005) Automatic cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’05), Palm, Spring, October 26–29. Springer, Berlin, pp 34–42

    Google Scholar 

  118. El-Baz A, Farag AA, Gimelfarb G, El-Ghar MA, Eldiasty T (2006) A new adaptive probabilistic model of blood vessels for segmenting MRA images. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’06), Copenhagen, 1–6 October 2006, pp 799–806

    Google Scholar 

  119. El-Baz A, Farag A, Gimel’farb G, El-Ghar MA, Eldiasty T (2006a) Fast unsupervised segmentation of 3D magnetic resonance angiography. In: Proceedings of IEEE international conference on image processing (ICIP’06). IEEE, Piscataway, pp 93–96

    Google Scholar 

  120. El-Baz A, Farag A, Gimel’farb G, El-Ghar MA, Eldiasty T (2006b) Probabilistic modeling of blood vessels for segmenting MRA images. In: Proceedings of IAPR international conference on pattern recognition (ICPR’06), vol 3. IEEE, Piscataway, pp 917–920

    Google Scholar 

  121. El-Baz A, Gimel’farb G, El-Ghar MA (2008a) A novel image analysis approach for accurate identification of acute renal rejection. In: Proceedings of IEEE international conference on image processing (ICIP’08), San Diego, 12–15 October 2008, pp 1812–1815

    Google Scholar 

  122. El-Baz A, Gimel’farb G, El-Ghar MA (2008b) Image analysis approach for identification of renal transplant rejection. In: Proceedings of IAPR international conference on pattern recognition (ICPR’08), Tampa, 8–11 December 2008, pp 1–4

    Google Scholar 

  123. Zikic D, Sourbron S, Feng X, Michaely HJ, Khamene A, Navab N (2008) Automatic alignment of renal DCE-MRI image series for improvement of quantitative tracer kinetic studies. In: Proceedings of SPIE medical imaging 2008: image processing (SPIE’08), vol 6914. SPIE, Bellingham, pp 1–8

    Google Scholar 

  124. de Senneville BD, Mendichovszky IA, Roujol S, Gordon I, Moonen C, Grenier N (2008) Improvement of MRI-functional measurement with automatic movement correction in native and transplanted kidneys. J Magnet Resonan Imag 28(4):970–978

    Article  Google Scholar 

  125. Anderlik A, Munthe-Kaas A, Oye O, Eikefjord E, Rorvik J, Ulvang D, Zollner F, Lundervold A (2009) Quantitative assessment of kidney function using dynamic contrast enhanced MRI-Steps towards an integrated software prototype. In: Proceedings of the 6th international symposium on image and signal processing and analysis (ISPA’09), Salzburg, 16–18 September 2009, pp 575–581

    Google Scholar 

  126. Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI- measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. IEEE Eng Med Biol Mag 43(1):40–48

    Google Scholar 

  127. Khalifa F, El-Ghar MA, Abdollahi B, Frieboes H, El-Diasty T, El-Baz A (2013) A comprehensive non-invasive framework for automated evaluation ofacute renal transplant rejection using DCE-MRI. NMR in Biomedicine 26(11):1460–1470

    Google Scholar 

  128. Hodneland E, Kjorstad A, Andersen E, Monssen J, Lundervold A, Rorvik J, Munthe-Kaas A (2011) In vivo estimation of glomerular filtration in the kidney using DCE-MRI. In: Proceedings of the 7th international symposium on image and signal processing analysis (ISPA’11), Dubrovnik, 4–6 September 2011, pp 755–761

    Google Scholar 

  129. Positano V, Bernardeschi I, Zampa V, Marinelli M, Landini L, Santarelli MF (2012) Automatic 2D registration of renal perfusion image sequences by mutual information and adaptive prediction. Mag Resonan Mater Phys Biol Med pp 1–11

    Google Scholar 

  130. El-Baz A, Farag A, Gimelfarb G (2005) MGRF controlled stochastic deformable model. In: Image analysis, Proceedings of the 14 Scandinavian conference on image analysis (SCIA'05), Joensuu, June 19–22. Springer, Heidelberg, pp. 1138–1147

    Google Scholar 

  131. Khalifa F, Beache GM, Firjani A, Welch KC, Gimel’farb G, El-Baz A (2010) Deformable model guided by stochastic speed with application in cine images segmentation. In: Proceedings of IEEE international conference on image processing (ICIP’10), Hong Kong, 26–29 September 2010, pp 1725–128

    Google Scholar 

  132. El-Baz A, Gimelfarb G, Falk R, Abo El-Ghar M (2009) Automatic analysis of 3D low dose CT images for early diagnosis of lung cancer. Pattern Recogn 42(6):1041–1051

    Article  Google Scholar 

  133. El-Baz A, Gimelfarb G, Falk R, El-Ghar MA (2011) 3D MGRF-based appearance modeling for robust segmentation of pulmonary nodules in 3D LDCT chest images. In: El-Baz A, Suri JS (eds) Lung imaging and computer aided diagnosis, chap. 3. CRC, Boca Raton, pp 51–63

    Google Scholar 

  134. El-Baz A, Gimelfarb G, Falk R, El-Ghar MA, Suri JA (2011) Appearance analysis for the early assessment of detected lung nodules. In: El-Baz A, Suri JS (eds) Lung imaging and computer aided diagnosis, chap. 17. IEEE, Piscataway, pp 395–404

    Google Scholar 

  135. El-Baz A, Khalifa F, Elnakib A, Nitzken M, Soliman A, McClure P, El-Ghar MA, Gimelfarb G (2012) A novel approach for global lung registration using 3D Markov-Gibbs appearance model. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’12), Nice, 1–5 October 2012. Springer, Berlin, pp 114–121

    Google Scholar 

  136. El-Baz A, Gimel’farb G, Abou El-Ghar M, Falk R (2012) Appearance-based diagnostic system for early assessment of malignant lung nodules. In: Proceedings of IEEE international conference on image processing (ICIP’12), Orlando, September 30–October 3, pp 533–536

    Google Scholar 

  137. El-Baz A, Soliman A, McClure P, Gimelfarb G, Abou El-Ghar M, Falk R (2012) Early assessment of malignant lung nodules based on the spatial analysis of detected lung nodules. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro (ISBI’12), Barcelona, 2–5 May 2012, pp 1463–1466

    Google Scholar 

  138. El-Baz A, Gimel’farb G, Falk R, El-Ghar M (2010) Appearance analysis for diagnosing malignant lung nodules. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro (ISBI’10), Rotterdam, 14–17 April 2010, pp 193–196

    Google Scholar 

  139. Farag AA, El-Baz A, Gimelfarb G, Falk R, El-Ghar MA, Eldiasty T, Elshazly S (2006) Appearance models for robust segmentation of pulmonary nodules in 3D LDCT chest images. In: Proceedings of international conference on medical image computing and computer-assisted intervention (MICCAI’06), Copenhagen, 1–6 October 2006, pp 734–741

    Google Scholar 

  140. Khalifa F, Beache GM, Gimel’farb G, Suri JS, El-Baz A (2011) State-of-the-art medical image registration methodologies: A survey. In: El-Baz A, Acharya UR, Mirmedhdi M, Suri JS (eds) Handbook of multi modality state-of-the-art medical image segmentation and registration methodologies, vol 1, chap 9. Springer, New York, pp 235–280

    Chapter  Google Scholar 

  141. Rueckert D, Clarkson MJ, Hill DLG, Hawkes DJ (2000) Non-rigid registration using higher-order mutual information. In: Proceedings of SPIE medical imaging 2000: image processing (SPIE’00), vol 3979, pp 438–447

    Google Scholar 

  142. Khalifa F, Beache GM, Elnakib A, Sliman H, Gimel’farb G, Welch KC, El-Baz A (2012) A new nonrigid registration framework for improved visualization of transmural perfusion gradients on cardiac first-pass perfusion MRI. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro (ISBI’12), Barcelona, 2–5 May 2012, pp 828–831

    Google Scholar 

  143. Khalifa F, Beache GM, Firjani A, Welch KC, Gimel’farb G, El-Baz A (2012) A new nonrigid registration approach for motion correction of cardiac first-pass perfusion MRI. In: Proceedings of IEEE international conference on image processing (ICIP’12), Lake Buena Vista, 30 September–3 October, 2012, pp 1665–1668

    Google Scholar 

  144. Khalifa F, Beache GM, Gimel’farb G, El-Baz A (2012) A novel CAD system for analyzing cardiac first-pass MRI images. In: Proceedings of IAPR international conference on pattern recognition (ICPR’12), Tsukuba Science City, 11–15 November 2012, pp 77–80

    Google Scholar 

  145. Khalifa F, Beache GM, Elnakib A, Sliman H, Gimel’farb G, Welch KC, El-Baz A (2013) A new shape-based framework for the left ventricle wall segmentation from cardiac first-pass perfusion MRI. In: IEEE international symposium on miomedical imaging: from nano to macro (ISBI’13), San Francisco, 7–11 April 2013. IEEE, Piscataway, pp 41–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman S. El-Baz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mostapha, M., Khalifa, F., Alansary, A., Soliman, A., Suri, J., El-Baz, A.S. (2014). Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection: Challenges and Methodologies. In: El-Baz, A., Saba, L., Suri, J. (eds) Abdomen and Thoracic Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8498-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8498-1_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8497-4

  • Online ISBN: 978-1-4614-8498-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics