Skip to main content

Lifestyle Changes, CAM, and Kidney Stones: Heart Health = Kidney Health

  • Chapter
  • First Online:

Abstract

It appears that reducing the risk of cardiovascular disease (CVD) may also be the ideal diet and lifestyle program to reduce the risk of kidney stones. Comprehensive lifestyle changes and healthy-heart parameters have synergistic impacts on reducing recurrent or incident nephrolithiasis as observed either in randomized trials from Parma, Italy, or from the observational cohort analysis when utilizing the Dietary Approaches to Stop Hypertension (DASH) program in the USA. Hypertension, dyslipidemia, weight and waist gain and accelerated large amounts of weight loss (bariatric surgery, diet, etc.), glucose intolerance/diabetes, and metabolic syndrome increase stone risk, but a higher potassium to sodium intake ratio, increased dietary magnesium, reduced animal protein, and normalizing dietary calcium and increased fluid intake could lower risk. Soluble dietary oxalates are more concerning compared to insoluble forms. A variety of dietary supplements also appear to impact risk. Arguably the best-known supplemental source of increased oxalate is from high dosages (>1,000–1,500 mg/day) of plain vitamin C (ascorbic acid), and calcium ascorbate or buffered vitamin C may cause less profound changes in oxalate. Vitamin C may lower serum uric acid and gout risk by also creating a higher urinary uric acid load in some individuals, which could also theoretically increase uric acid stone risk. Some cranberry concentrate supplements for urinary tract infection (UTI) have unusually high oxalate concentrations and need to be tested for this compound. Vitamin B6 (pyridoxine hydrochloride and potentially pyridoxal-5-phosphate) shifts oxalate metabolism toward the production of glycine at dosages of 50–100 mg per day and could be beneficial in some oxalate stone formers apart from those with primary hyperoxaluria type I. Higher dosages (300 mg or more) could also cause a sensory peripheral neuropathy. A probiotic or Oxalobacter formigenes and other intestinal bacterial may also play a role in reducing oxalate levels. Calcium supplements in excess appear to increase the risk of stone disease, especially calcium carbonate, and calcium citrate is an alternative for those with a history of oxalate stones, but supplementation also increases constipation risk with age. Vitamin D has a controversial impact on stone risk, but megadosing is never prudent. Omega-3 fatty acids supplements via anti-inflammatory effects could reduce stone risk, and omega-6 has some preliminary similar benefits, but inosine dietary supplementation is known to increase uric acid levels and stone disease. A variety of other CAM options are discussed in this chapter. What if healthcare professionals in urology could have some role in helping patients improve the quality and quantity of their life via comprehensive lifestyle recommendations for stone disease risk reduction? It appears that this is no longer a question, but a reality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reiner AP, Kahn A, Eisner BH, Pletcher MJ, Sadetsky N, Williams OD, et al. Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. J Urol. 2011;185:920–5.

    PubMed  Google Scholar 

  2. Rule AD, Roger VL, Melton LJ, Bergstraih EJ, Li X, Peyser PA, et al. Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol. 2010;21:1641–4.

    PubMed  Google Scholar 

  3. Domingos F, Serra A. Nephrolithiasis is associated with an increased prevalence of cardiovascular disease. Nephrol Dial Transplant. 2011;26:864–8.

    PubMed  Google Scholar 

  4. Ando R, Nagaya T, Suzuki S, Takahashi H, Kawai M, Okada A, et al. Kidney stone formation is positively associated with conventional risk factors for coronary heart disease in Japanese men. J Urol. 2013;189:1340–6.

    PubMed  Google Scholar 

  5. Tang J, Mettler P, McFann K, Chonchoi M. The association of prevalent kidney stone disease with mortality in US adults: The National Health and Nutrition Examination Survey III, 1988–1994. Am J Nephrol. 2013;37:501–6.

    PubMed  Google Scholar 

  6. Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F, Maggiore U, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346:77–84.

    PubMed  CAS  Google Scholar 

  7. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, DASH Collaborative Research Group, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336:1117–24.

    PubMed  CAS  Google Scholar 

  8. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, DASH-Sodium Collaborative Research Group, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med. 2001;344:3–10.

    PubMed  CAS  Google Scholar 

  9. Taylor EN, Fung TT, Curhan GC. DASH-style diet associates with reduced risk for kidney stones. J Am Soc Nephrol. 2009;20:2253–9.

    PubMed  CAS  Google Scholar 

  10. Taylor EN, Stampfer MJ, Mount DB, Curhan GC. DASH-style diet and 24-hour urine composition. Clin J Am Soc Nephrol. 2010;5:2315–22.

    PubMed  CAS  Google Scholar 

  11. Cappuccio FP, Siani A, Barba G, Mellone MC, Russo L, Farinaro E, et al. A prospective study of hypertension and the incidence of kidney stones in men. J Hypertens. 1999;17:1017–22.

    PubMed  CAS  Google Scholar 

  12. Cappuccio FP, Strazzullo P, Mancini M. Kidney stones and hypertension: population based study of an independent clinical association. BMJ. 1990;300: 1234–6.

    PubMed  CAS  Google Scholar 

  13. Borghi L, Meschi T, Guerra A, Briganti A, Schlanchi T, Allegri F, et al. Essential arterial hypertension and stone disease. Kidney Int. 1999;55:2397–406.

    PubMed  CAS  Google Scholar 

  14. Madore F, Stampfer MJ, Rimm EB, Curhan GC. Nephrolithiasis and risk of hypertension. Am J Hypertens. 1998;11:46–53.

    PubMed  CAS  Google Scholar 

  15. Madore F, Stampfer MJ, Willett WC, Speizer FE. Nephrolithiasis and risk of hypertension in women. Am J Kidney Dis. 1998;32:802–7.

    PubMed  CAS  Google Scholar 

  16. Eisner BH, Porten SP, Bechis SK, Stoller ML. Hypertension is associated with increased urinary calcium excretion in patients with nephrolithiasis. J Urol. 2010;183:576–9.

    PubMed  CAS  Google Scholar 

  17. Inci M, Demirtas A, Sarli B, Akinsai E, Baydilli N. Association between body mass index, lipid profiles, and types of urinary stones. Ren Fail. 2012;34: 1140–3.

    PubMed  CAS  Google Scholar 

  18. Tsujihata M, Yoshioka I, Tsujimura A, Nonomura N, Okuyama A. Why does atorvastatin inhibit renal crystal retention? Urol Res. 2011;39:379–83.

    PubMed  CAS  Google Scholar 

  19. Sur RL, Masterson JH, Palazzi KL, L’esperance JO, Auge BK, Change DC, et al. Impact of statins on nephrolithiasis in hyperlipidemic patients: a 10-year review of an equal access health care system. Clin Nephrol. 2013;79:351–5.

    PubMed  CAS  Google Scholar 

  20. Bonnet J, McPherson R, Tedgul A, Simoneau D, Nozza A, Martineau P, et al. Comparative effects of 10-mg versus 80-mg atorvastatin on high-sensitivity C-reactive protein in patients with stable coronary artery disease: results of the CAP (Comparative Atorvastatin Pleiotropic effects) study. Clin Ther. 2008;30:2298–313.

    PubMed  CAS  Google Scholar 

  21. Akoudad S, Szkio M, McAdams MA, Fulop T, Anderson CA, Coresh J, et al. Correlates of kidney stone disease differ by race in a multi-ethnic middle-aged population: the ARIC study. Prev Med. 2010;51:416–20.

    PubMed  Google Scholar 

  22. Buck AC, Davies RL, Harrison T. The protective role of eicosapentaenoic acid [EPA] in the pathogenesis of nephrolithiasis. J Urol. 1991;146:188–94.

    PubMed  CAS  Google Scholar 

  23. Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293:455–62.

    PubMed  CAS  Google Scholar 

  24. Del Valle EE, Negri AL, Spivacow FR, Rosende G, Forrester M, Pinduli I. Metabolic diagnosis in stone formers in relation to body mass index. Urol Res. 2012;40:47–52.

    PubMed  CAS  Google Scholar 

  25. Taylor EN, Curhan GC. Body size and 24-hour urine composition. Am J Kidney Dis. 2006;48:905–15.

    PubMed  CAS  Google Scholar 

  26. Lee SC, Kim YJ, Kim TH. Impact of obesity in patients with urolithiasis and its prognostic usefulness in stone recurrence. J Urol. 2008;179:570–4.

    PubMed  Google Scholar 

  27. Ekeruo WO, Tan YH, Young MD, Dahm P, Maloney ME, Mathias BJ, et al. Metabolic risk factors and the impact of medical therapy on the management of nephrolithiasis in obese patients. J Urol. 2004;172:159–63.

    PubMed  Google Scholar 

  28. Taylor EN, Stampfer MJ, Curhan GC. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 2005;68:1230–5.

    PubMed  Google Scholar 

  29. Chung SD, Chen YK, Lin HC. Increased risk of diabetes in patients with urinary calculi: a 5-year followup study. J Urol. 2011;186:1888–93.

    PubMed  Google Scholar 

  30. Tasca A. Metabolic syndrome and bariatric surgery in stone disease etiology. Curr Opin Urol. 2011;21: 129–33.

    PubMed  Google Scholar 

  31. Ahmed MH, Ahmed HT, Khalil AA. Renal stone disease and obesity: what is important for urologists and nephrologists? Ren Fail. 2012;34:1348–54.

    PubMed  CAS  Google Scholar 

  32. Asplin JR. Obesity and urolithiasis. Adv Chronic Kidney Dis. 2009;16:11–20.

    PubMed  Google Scholar 

  33. Canada AE, Isgoren AE. Re: Increased risk of diabetes in patients with urinary calculi: a 5-year followup study: S-D Chung, Y-K Chen and H-C lin J Urol 2011;186:1888–1893. J Urol. 2012;187:2279–80.

    Google Scholar 

  34. Eisner BH, Porten SP, Bechis SK, Stoller ML. Diabetic kidney stone formers excrete more oxalate and have lower urine pH than nondiabetic stone formers. J Urol. 2010;183:2244–8.

    PubMed  CAS  Google Scholar 

  35. Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwlers ML, et al. Effects of low-dose, controlled release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomized, placebo-controlled, phase 3 trial. Lancet. 2011;16(377):1341–52.

    Google Scholar 

  36. Penniston KL, Kaplon DM, Gould JC, Nakada SY. Gastric band placement for obesity is not associated with increased urinary risk of urolithiasis compared to bypass. J Urol. 2009;182:2340–6.

    PubMed  CAS  Google Scholar 

  37. Tice JA, Karliner L, Walsh J, Petersen AJ, Feldman MD. Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am J Med. 2008;121:885–93.

    PubMed  Google Scholar 

  38. Lemann J, Piering WF, Lennon EJ. Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation. N Engl J Med. 1969;280: 232–7.

    PubMed  CAS  Google Scholar 

  39. Friedman AN, Ogden LG, Foster GD, Klein S, Stein R, Miller B, et al. Comparative effects of low-carbohydrate high-protein versus low-fat diets on the kidney. Clin J Am Soc Nephrol. 2012;7:1103–11.

    PubMed  CAS  Google Scholar 

  40. Reddy ST, Wang CY, Sakhaee K, Brinkley L, Pak CY. Effect of low-carbohydrate high-protein diets on acid–base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis. 2002;40: 265–74.

    PubMed  CAS  Google Scholar 

  41. West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, Kramer H. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am J Kidney Dis. 2008;51:741–7.

    PubMed  Google Scholar 

  42. Jeong IG, Kang T, Bang JK, Park J, Kim W, Hwang SS, et al. Association between metabolic syndrome and the presence of kidney stones in a screened population. Am J Kidney Dis. 2011;58:383–8.

    PubMed  Google Scholar 

  43. Kadlec AO, Greco K, Fridirici ZC, Hart ST, Vellos T, Turk TM. Metabolic syndrome and urinary stone composition: what factors matter most? Urology. 2012;80:805–10.

    PubMed  Google Scholar 

  44. Sakhaee K, Nigam S, Snell P, Hsu MC, Pak CY. Assessment of the pathogenetic role of physical exercise in renal stone formation. J Clin Endocrinol Metab. 1987;65:974–9.

    PubMed  CAS  Google Scholar 

  45. Sriboonlue P, Prasongwatana V, Tosukhowong P, Tungsanga K, Bovornpadoongkitti S. Increased risk of urinary stone disease by physical exercise. Southeast Asian J Trop Med Public Health. 1996;27: 172–7.

    PubMed  CAS  Google Scholar 

  46. Okada A, Ohshima H, Itoh Y, Yasui T, Tozawa K, Kohri K. Risk of renal stone formation induced by long-term bed rest could be decreased by premedication with bisphosphonate and increased by resistive exercise. Int J Urol. 2008;15:630–5.

    PubMed  CAS  Google Scholar 

  47. Monga M, Macias B, Groppo E, Kostelec M, Hargens A. Renal stone risk in a simulated microgravity environment: impact of treadmill exercise with lower body negative pressure. J Urol. 2006;176: 127–31.

    PubMed  Google Scholar 

  48. Moyad MA. Dr. Moyad’s no bogus science health advice. Ann Arbor, MI: Spry; 2010.

    Google Scholar 

  49. Swardfager W, Herrmann N, Cornish S, Mazereeuw G, Marzolini S, Sham L, et al. Exercise intervention and inflammatory markers in coronary artery disease: a meta-analysis. Am Heart J. 2012;163: 666–76.

    PubMed  CAS  Google Scholar 

  50. Fink HA, Wilt TJ, Eldman KE, Garimella PS, MacDonald R, Rutks IR, et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann Intern Med. 2013;158:535–43.

    PubMed  Google Scholar 

  51. Fink HA, Akornor JW, Garimella PS, MacDonald R, Cutting A, Rutks IR, et al. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: a systematic review and meta-analysis of randomized trials. Eur Urol. 2009;56:72–80.

    PubMed  Google Scholar 

  52. Sharp RL. Role of whole foods in promoting hydration after exercise in humans. J Am Coll Nutr. 2007;26(5 Suppl):592S–6.

    PubMed  Google Scholar 

  53. Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Beverage use and risk for kidney stones in women. Ann Intern Med. 1998;128:534–40.

    PubMed  CAS  Google Scholar 

  54. Haleblian GE, Leitao VA, Pierre SA, Robinson MR, Albala DM, Ribeiro AA, et al. Assessment of citrate concentration in citrus fruit-based juices and beverages: implications for management of hypocitraturic nephrolithiasis. J Endourol. 2008;22:1359–66.

    PubMed  Google Scholar 

  55. Eisner BH, Asplin JR, Goldfarb DS, Ahmad A, Stoller ML. Citrate, malate and alkali content in commonly consumed diet sodas: implications for nephrolithiasis treatment. J Urol. 2010;183: 2419–23.

    PubMed  CAS  Google Scholar 

  56. Penniston KL, Nakada SY, Holmes RP, Assimos DG. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J Endourol. 2008;22:567–70.

    PubMed  Google Scholar 

  57. Hiatt RA, Ettinger B, Caan B, Quesenberry Jr CP, Duncan D, Citron JT. Randomized controlled trial of a low animal protein, high fiber diet in the prevention of recurrent calcium oxalate kidney stones. Am J Epidemiol. 1996;144:25–33.

    PubMed  CAS  Google Scholar 

  58. Rotily M, Leonetti F, Iovanna C, Berthezene P, Dupuy P, Vazi A, et al. Effects of low animal protein or high-fiber diets on urine composition in calcium nephrolithiasis. Kidney Int. 2000;57:1115–23.

    PubMed  CAS  Google Scholar 

  59. Dussol B, Iovanna C, Rotily M, Morange S, Leonetti F, Dupuy P, et al. A randomized trial of low-animal-protein or high-fiber diets for secondary prevention of calcium nephrolithiasis. Nephron Clin Pract. 2008;110:185–94.

    Google Scholar 

  60. Ebisuno S, Morimoto S, Yasukawa S, Ohkawa T. Results of long-term rice bran treatment on stone recurrence in hypercalciuric patients. Br J Urol. 1991;67:237–40.

    PubMed  CAS  Google Scholar 

  61. Shah PJ, Green NA, Williams G. Unprocessed bran and its effect on urinary calcium excretion in idiopathic hypercalciuria. Br Med J. 1980;281:426–9.

    PubMed  CAS  Google Scholar 

  62. Ala-Opas M, Elomaa I, Porkka L, Alfthan O. Unprocessed bran and intermittent thiazide therapy in prevention of recurrent urinary calcium stones. Scand J Urol Nephrol. 1987;21:311–4.

    PubMed  CAS  Google Scholar 

  63. Kaczmarczyk MM, Miller MJ, Freund GG. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism. 2012;61: 1058–66.

    PubMed  CAS  Google Scholar 

  64. Marangella M, Bianco O, Martini C, Petrarulo M, Vitale C, Linari F. Effect of animal and vegetable protein intake on oxalate excretion in idiopathic calcium stone disease. Br J Urol. 1989;63:348–51.

    PubMed  CAS  Google Scholar 

  65. Robertson WG, Peacock M, Heyburn PJ, Hanes FA, Rutherford A, Clementson E, et al. Should recurrent calcium oxalate stone formers become vegetarians? Br J Urol. 1979;51:427–31.

    PubMed  CAS  Google Scholar 

  66. Brinkley LJ, Gregory J, Pak CY. A further study of oxalate bioavailability in foods. J Urol. 1990;144: 94–6.

    PubMed  CAS  Google Scholar 

  67. Brinkley L, McGuire J, Gregory J, Pak CY. Bioavailability of oxalate in foods. Urology. 1981;17:534–8.

    PubMed  CAS  Google Scholar 

  68. Brogren M, Savage GP. Bioavailability of soluble oxalate from spinach eaten with and without milk products. Asia Pac J Clin Nutr. 2003;12:219–24.

    PubMed  CAS  Google Scholar 

  69. Radek M, Savage GP. Oxalates in some Indian green leafy vegetables. Int J Food Sci Nutr. 2008;59: 246–60.

    PubMed  CAS  Google Scholar 

  70. Noonan SC, Savage GP. Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr. 1999;8:64–74.

    CAS  Google Scholar 

  71. Ghosh Das S, Savage GP. Total and soluble oxalate content of some Indian spices. Plant Foods Hum Nutr. 2012;67:186–90.

    PubMed  CAS  Google Scholar 

  72. Tang M, Larson-Meyer DE, Liebman M. Effect of cinnamon and turmeric on urinary oxalate excretion, plasma lipids, and plasma glucose in healthy subjects. Am J Clin Nutr. 2008;87:1262–7.

    PubMed  CAS  Google Scholar 

  73. Liebman M, Costa G. Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads. J Urol. 2000;163:1565–9.

    PubMed  CAS  Google Scholar 

  74. Jiang J, Knight J, Easter LH, Neiberg R, Holmes RP, Assimos DG. Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary on urinary oxalate excretion. J Urol. 2011;186: 135–9.

    PubMed  CAS  Google Scholar 

  75. American Dietetic Association. Urolithiasis/urinary stones. In: ADA Nutrition Care Manual. Chicago, IL: American Dietetic Association; 2005. p. 483–6.

    Google Scholar 

  76. Massey LK. Food oxalate: factors affecting measurement, biological variation, and bioavailability. J Am Diet Assoc. 2007;107:1191–4.

    PubMed  Google Scholar 

  77. Massey LK, Sutton RAL. Modification of dietary oxalate and calcium reduces urinary oxalate in hyperoxaluric patients with kidney stones. J Am Diet Assoc. 1993;93:1305–7.

    PubMed  CAS  Google Scholar 

  78. Al-Wahsh IA, Horner HT, Palmer RG, Reddy MB, Massey LK. Oxalate and phytate of soy foods. J Agric Food Chem. 2005;53:5670–4.

    PubMed  CAS  Google Scholar 

  79. Heaney RP, Weaver CM. Calcium absorption from kale. Am J Clin Nutr. 1990;51:656–7.

    PubMed  CAS  Google Scholar 

  80. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, Women’s Health Initiative Investigators, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354:669–83.

    PubMed  CAS  Google Scholar 

  81. Candelas G, Martinez-Lopez JA, Rosario MP, Carmona L, Loza E. Calcium supplementation and kidney stone risk in osteoporosis: a systematic literature review. Clin Exp Rheumatol. 2012;30:954–61.

    PubMed  Google Scholar 

  82. Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med. 1997;126:497–504.

    PubMed  CAS  Google Scholar 

  83. Shaker HK, Stigleman S. Clinical inquiry: can calcium supplements cause serious adverse effects in healthy people? J Fam Pract. 2012;61:620–1.

    PubMed  Google Scholar 

  84. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Report brief, November 2010. Washington, DC: Institute of Medicine; 2001. Available at: http://www.iom.edu/~/media/Files/Report%20Files/2010/Dietary-Reference-Intakes-for-Calcium-and-Vitamin-D/Vitamin%20D%20and%20Calcium%202010%20Report%20Brief.pdf. Accessed on 14 May 2012.

  85. Eisner BH, Thavaseelan S, Sheth S, Halebilian G, Pareek G. Relationship between serum vitamin D and 24-hour urine calcium in patients with nephrolithiasis. Urology. 2012;80:1007–10.

    PubMed  Google Scholar 

  86. Leaf DE, Korets R, Taylor EN, Tang J, Asplin JR, Goldfarb DS, et al. Effect of vitamin D repletion on urinary calcium excretion among kidney stone formers. Clin J Am Soc Nephrol. 2012;7:829–34.

    PubMed  CAS  Google Scholar 

  87. Terris MK, Issa MM, Tacker JR. Dietary supplementation with cranberry concentrate tablets may increase the risk of nephrolithiasis. Urology. 2001;57:26–9.

    PubMed  CAS  Google Scholar 

  88. McHarg T, Rodgers A, Charlton K. Influence of cranberry juice on the urinary risk factors for calcium oxalate kidney stone formation. BJU Int. 2003;92:765–8.

    PubMed  CAS  Google Scholar 

  89. Gettman MT, Ogan K, Brinkley LJ, Adams-Huet B, Pak CY, Pearle MS. Effect of cranberry juice consumption on urinary stone risk factors. J Urol. 2005;174:590–4.

    PubMed  CAS  Google Scholar 

  90. Jepson RG, Williams G, Craig JC. Cranberries for preventing urinary tract infections. Cochrane Database Syst Rev. 2012;10, CD001321.

    PubMed  Google Scholar 

  91. Goldman RD. Cranberry juice for urinary tract infection in children. Can Fam Physician. 2012;58: 398–401.

    PubMed  Google Scholar 

  92. Harmsen E, de Tombe PP, de Jong J, Achterberg PW. Enhanced ATP and GTP synthesis from hypoxanthine or inosine after myocardial ischemia. Am J Physiol. 1984;246:H37–43.

    PubMed  CAS  Google Scholar 

  93. Currell K, Derave W, Everaert I, McNaughton L, Slater G, Burke LM, et al. A–Z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance-Part 20. Br J Sports Med. 2011;45:530–2.

    PubMed  CAS  Google Scholar 

  94. McNaughton L, Dalton B, Tarr J. Inosine supplementation has no effect on aerobic or anaerobic cycling performance. Int J Sports Nutr. 1999;9:333–44.

    CAS  Google Scholar 

  95. Starling RD, Trappe TA, Short KR, Sheffield-Moore M, Jozsi AC, Fink WJ, et al. Effect of inosine supplementation on aerobic and anaerobic cycling performance. Med Sci Sports Exerc. 1996;28:1193–8.

    PubMed  CAS  Google Scholar 

  96. Kovacs Z, Juhasz G, Palkovits M, Dobolyi A, Kekesi KA. Area, age, and gender dependence of the nucleoside system in the brain: a review of current literature. Curr Top Med Chem. 2011;11:1012–33.

    PubMed  CAS  Google Scholar 

  97. McCarty MF, Barroso-Aranda J, Contreras F. High-dose folate and dietary purines promote scavenging of peroxynitrite-derived radicals-clinical potential in inflammatory disorders. Med Hypotheses. 2009;73: 824–34.

    PubMed  CAS  Google Scholar 

  98. Markowitz CE, Spitsin S, Zimmerman V, Jacobs D, Udupa JK, Hooper DC, et al. The treatment of multiple sclerosis with inosine. J Altern Complement Med. 2009;15:619–25.

    PubMed  Google Scholar 

  99. Liu B, Shen Y, Xiao K, Tang Y, Cen L, Wei J. Serum uric acid levels in patients with multiple sclerosis: a meta-analysis. Neurol Res. 2012;34:163–71.

    PubMed  CAS  Google Scholar 

  100. Spitsin S, Markowitz CE, Zimmerman V, Koprowski H, Hooper DC. Modulation of serum uric acid levels by inosine in patients with multiple sclerosis does not affect blood pressure. J Hum Hypertens. 2010;24:359–62.

    PubMed  CAS  Google Scholar 

  101. Kreider RB, Melton C, Greenwood M, Rasmussen C, Lundberg J, Earnest C, et al. Effects of oral D-ribose supplementation on anaerobic capacity and selected metabolic markers in healthy males. Int J Sports Nutr Exerc Metab. 2003;13:76–86.

    CAS  Google Scholar 

  102. Seifert JG, Subudhi AW, Fu MX, Riska KL, John JC, Shecterle LM, et al. The role of ribose on oxidative stress during hypoxic exercise: a pilot study. J Med Food. 2009;12:690–3.

    PubMed  CAS  Google Scholar 

  103. Eisner BH, Sheth S, Dretler SP, Herrick B, Pais Jr VM. High dietary magnesium intake decreases hyperoxaluria in patients with nephrolithiasis. Urology. 2012;80:780–3.

    PubMed  Google Scholar 

  104. Volpe SL. Magnesium in disease prevention and overall health. Adv Nutr. 2013;4:378S–83.

    PubMed  CAS  Google Scholar 

  105. Jaipakdee S, Prasongwatana V, Premgamone A, Reungjui S, Tosukhowong P, Tungsanga K, et al. The effects of potassium and magnesium supplementations on urinary risk factors of renal stone patients. J Med Assoc Thai. 2004;87:255–63.

    PubMed  Google Scholar 

  106. Guerrera MP, Volpe SL, Mao JJ. Therapeutic uses of magnesium. Am Fam Physician. 2009;80:157–62.

    PubMed  Google Scholar 

  107. Ortiz-Alvarado O, Miyaoka R, Kriedberg C, Leavitt DA, Moeding A, Stessman M, et al. Urology. 2012;79:282–6.

    PubMed  Google Scholar 

  108. Yasui T, Suzuki S, Itoh Y, Tozawa K, Tokudome S, Kohri K. Eicosapentaenoic acid has a preventive effect on the recurrence of nephrolithiasis. Urol Int. 2008;81:135–8.

    PubMed  CAS  Google Scholar 

  109. Taylor EN, Stampfer MJ, Curhan GC. Fatty acid intake and incident nephrolithiasis. Am J Kidney Dis. 2005;45:267–74.

    PubMed  CAS  Google Scholar 

  110. The Age-Related Eye Disease Study 2 (AREDS2) Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the age-related eye disease study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309:2005–15.

    Google Scholar 

  111. Risk and Prevention Study Collaborative Group. N-3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013;368:1800–8.

    Google Scholar 

  112. Mozaffarian D, Marchioli R, Macchia A, Silleta MG, Ferrazzi P, Gardner TJ, OPERA Investigators, et al. Fish oil and postoperative atrial fibrillation: the Omega-3 fatty acids for prevention of post-operative atrial fibrillation (OPERA) randomized trial. JAMA. 2012;308:2001–11.

    PubMed  CAS  Google Scholar 

  113. Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA. 2012;308:1024–33.

    PubMed  CAS  Google Scholar 

  114. Rodgers A, Lewandowski S, Allie-Hamdulay S, Pinnock D, Baretta G, Gambaro G. Evening primrose oil supplementation increases citraturia and decreases other urinary risk factors for calcium oxalate urolithiasis. J Urol. 2009;182:2957–63.

    PubMed  CAS  Google Scholar 

  115. Brignole-Baudoulin F, Baudoulin C, Aragona P, Rolando M, Labetoulle M, Pisella PJ, et al. A multicentre, double-masked, randomized, controlled trial assessing the effect of oral supplementation of omega-3 and omega-6 fatty acids on a conjunctival inflammatory marker in dry eye patients. Acta Opthalmol. 2011;89:e591–7.

    Google Scholar 

  116. Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov., sp. Nov: oxalate degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985;141:1–7.

    PubMed  CAS  Google Scholar 

  117. Hoppe B, Dittlich K, Fehrenbach H, Plum G, Beck BB. Reduction of plasma oxalate levels by oral application of Oxalobacter formigenes in 2 patients with infantile oxalosis. Am J Kidney Dis. 2011;58:453–5.

    PubMed  Google Scholar 

  118. Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, et al. Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary oxaluria. Nephrol Dial Transplant. 2011;26:3609–15.

    PubMed  Google Scholar 

  119. Assimos D. Re: Sensitivity of human strains of Oxalobacter formigenes to commonly prescribed antibiotics. J Urol. 2013;189:171–2.

    PubMed  Google Scholar 

  120. Kelly JP, Curhan GC, Cave DR, Anderson TE, Kaufman DW. Factors related to colonization with Oxalobacter formigenes in U.S. adults. J Endourol. 2011;25:673–9.

    PubMed  Google Scholar 

  121. Duncan SH, Richardson AJ, Kaul P, Holmes RP, Allison MJ, Stewart CS. Oxalobacter formigenes and its potential role in human health. Appl Environ Microbiol. 2002;68:3841–7.

    PubMed  CAS  Google Scholar 

  122. Kharlamb V, Schelker J, Francois F, Jiang J, Holmes RP, Goldfarb DS. Oral antibiotic treatment of Helicobacter pylori leads to persistently reduced intestinal colonization rates with Oxalobacter formigenes. J Endourol. 2011;25:1781–5.

    PubMed  Google Scholar 

  123. Lange JN, Wood KD, Wong H, Otto R, Mufarrij PW, Knight J, et al. Sensitivity of human strains of Oxalobacter formigenes to commonly prescribed antibiotics. Urology. 2012;79:1286–9.

    PubMed  Google Scholar 

  124. Duffey BG, Miyaoka R, Holmes R, Assimos D, Hinck B, Korman E, et al. Oxalobacter colonization in the morbidly obese and correlation with urinary stone risk. Urology. 2011;78:531–4.

    PubMed  Google Scholar 

  125. Federici F, Vitali B, Gotti R, Pasca MR, Gobbi S, Peck AB, et al. Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis. Appl Environ Microbiol. 2004;70:5066–73.

    PubMed  CAS  Google Scholar 

  126. Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 2001;60:1097–105.

    PubMed  CAS  Google Scholar 

  127. Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol. 2008;19:1197–203.

    PubMed  CAS  Google Scholar 

  128. Prokopovich S, Knight J, Assimos DG, Holmes RP. Variability of Oxalobacter formigenes and oxalate in stool samples. J Urol. 2007;178:2186–90.

    PubMed  CAS  Google Scholar 

  129. Cochat P, Hulton SA, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, OxalEurope, et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant. 2012;27:1729–36.

    PubMed  CAS  Google Scholar 

  130. Milliner DS, Eickholt JT, Bergstrahl EJ, Wilson DM, Smith LH. Results of long-term treatment with orthophosphates and pyridoxine in patients with primary hyperoxaluria. N Engl J Med. 1994;331: 1553–8.

    PubMed  CAS  Google Scholar 

  131. Williams HE, Smith Jr RH. Primary hyperoxaluria. In: Stansbury JB, Wyngaarden JB, Fredrickson PS, Goldstein SL, Brown MS, editors. The metabolic basis of inherited disease. 5th ed. New York: McGraw-Hill; 1983. p. 204–10.

    Google Scholar 

  132. Goldenberg RM, Girone JAC. Oral pyridoxine in the prevention of oxalate kidney stones. Am J Nephrol. 1996;16:552–3.

    PubMed  CAS  Google Scholar 

  133. Scheinman JI, Voziyan PA, Belmont JM, et al. Pyridoxamine lowers oxalate excretion and kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria. Urol Res. 2005;33:368–71.

    PubMed  CAS  Google Scholar 

  134. Lheureux P, Penaloza A, Gris M. Pyridoxine in clinical toxicology: a review. Eur J Emerg Med. 2005;12:78–85.

    PubMed  Google Scholar 

  135. Ortiz-Alvarado O, Miyaoka R, Kriedberg C, Moeding A, Stessman M, Monga M. Pyridoxine and dietary counseling for the management of idiopathic hyperoxaluria in stone-forming patients. Urology. 2011;77:1054–8.

    PubMed  Google Scholar 

  136. Mitwalli A, Aylomamitis A, Grass L, Oreopoulos DG. Control of hyperoxaluria with large doses of pyridoxine in patients with kidney stones. Int Urol Nephrol. 1988;20:353–9.

    PubMed  CAS  Google Scholar 

  137. Jaeger P, Portmann L, Jacquet AF, Burckhardt P. Pyridoxine can normalize oxaluria in idiopathic renal lithiasis. Schweiz Med Wochenschr. 1986;116:1783–6.

    PubMed  CAS  Google Scholar 

  138. Gershoff SN, Prien EL. Effect of daily MgO and vitamin B6 administration to patients with recurring calcium oxalate kidney stones. Am J Clin Nutr. 1967;20:393–9.

    PubMed  CAS  Google Scholar 

  139. Nakada T, Sasagawa I, Furuta H, Katayama T, Shimazaki J. Effect of high calcium diet on urinary oxalate excretion in urinary stone-forming patients. Eur Urol. 1988;15:264–70.

    PubMed  CAS  Google Scholar 

  140. Curhan GC, Willett WC, Speizer FE, et al. Intake of vitamin B6 and C and the risk of kidney stones in women. J Am Soc Nephrol. 1999;10:840–5.

    PubMed  CAS  Google Scholar 

  141. Berger A, Schaumberg HH. More on neuropathy from pyridoxine abuse. N Engl J Med. 1984;311: 986–7.

    PubMed  CAS  Google Scholar 

  142. Radimer K, Bindewald B, Hughes J, Ervin B, Swanson C, Picciano MF. Dietary supplement use by US adults: data from the National Health and Nutrition Examination Survey, 1999–2000. Am J Epidemiol. 2004;160:339–49.

    PubMed  Google Scholar 

  143. Hirayama F, Lee AH, Binns CW, Watanabe F, Ogawa T. Dietary supplementation by older adults in Japan. Asia Pac J Clin Nutr. 2008;17:280–4.

    PubMed  Google Scholar 

  144. Gardiner P, Woods C, Kemper KJ. Dietary supplement use among health care professionals enrolled in an online curriculum on herbs and dietary supplements. BMC Complement Altern Med. 2006;6:21.

    PubMed  Google Scholar 

  145. Picciano MF, Dwyer JT, Radimer KL, Wilson DH, Fisher KD, Thomas PR, et al. Dietary supplement use among infants, children, and adolescents in the United States, 1999–2002. Arch Pediatr Adolesc Med. 2007;161:978–85.

    PubMed  Google Scholar 

  146. Frank E, Bendich A, Denniston M. Use of vitamin-mineral supplements by female physicians in the United States. Am J Clin Nutr. 2000;72:969–75.

    PubMed  CAS  Google Scholar 

  147. Hall PM. Preventing kidney stones: calcium restriction not warranted. Cleve Clin J Med. 2002;69:885–8.

    PubMed  Google Scholar 

  148. Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006;367:333–44.

    PubMed  CAS  Google Scholar 

  149. Khan SR. Animal models of kidney stone formation: an analysis. World J Urol. 1997;15:236–43.

    PubMed  CAS  Google Scholar 

  150. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A. Hyperoxaluria: a gut-kidney axis? Kidney Int. 2011;80:1146–58.

    PubMed  CAS  Google Scholar 

  151. Baxmann AC, De OG, Mendonca C, Heilberg IP. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 2003;63:1066–71.

    PubMed  CAS  Google Scholar 

  152. Traxer O, Huet B, Poindexter J, Pak CY, Pearle MS. Effect of ascorbic acid consumption on urinary stone risk factors. J Urol. 2003;170(2 Pt 1):397–401.

    PubMed  CAS  Google Scholar 

  153. Massey LK, Liebman M, Kynast-Gales SA. Ascorbate increases human oxaluria and kidney stone risk. J Nutr. 2005;135:1673–7.

    PubMed  CAS  Google Scholar 

  154. Taylor EN, Stampfer MJ, Curhan GC. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Am Soc Nephrol. 2004;15:3225–32.

    PubMed  Google Scholar 

  155. Taylor EN, Curhan GC. Determinants of 24-hour urinary oxalate excretion. Clin J Am Soc Nephrol. 2008;3:1453–60.

    PubMed  CAS  Google Scholar 

  156. Thomas LD, Elinder CG, Tiselius HG, Wolk A, Akesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. 2013;173:386–8.

    PubMed  Google Scholar 

  157. Fletcher RH. The risk of taking ascorbic acid. JAMA Intern Med. 2013;173:375–94.

    PubMed  Google Scholar 

  158. Moyad MA, Combs MA, Crowley DC, Baisley JE, Sharma P, Vrablic AS, et al. Vitamin C with metabolites reduce oxalate levels compared to ascorbic acid: a preliminary and novel clinical urologic finding. Urol Nurs. 2009;29:95–102.

    PubMed  Google Scholar 

  159. Moyad MA, Combs MA, Baisley JE, Evans M. Vitamin C with metabolites: additional analysis suggests favorable changes in oxalate. Urol Nurs. 2009;29:383–5.

    PubMed  Google Scholar 

  160. Wright JV, Suen RM, Kirk FR. Comparative studies of “Ester-C” versus L-ascorbic acid. Int Clin Nutr Rev. 1990;10:7–10.

    Google Scholar 

  161. Pancorbo D, Vazquez C, Fletcher MA. Vitamin C-lipid metabolites: uptake and retention and effect on plasma C-reactive protein and oxidized LDL levels in healthy volunteers. Med Sci Monit. 2008;14:CR547–51.

    PubMed  CAS  Google Scholar 

  162. Suresh E, Das P. Recent advances in management of gout. OJM. 2012;105:407–17.

    CAS  Google Scholar 

  163. Juraschek SP, Miller 3rd ER, Gelber AC. Effect of oral vitamin C supplementation on serum uric acid: a meta-analysis of randomized controlled trials. Arthritis Care Res (Hoboken). 2011;63:1295–306.

    CAS  Google Scholar 

  164. Huang HY, Appel LJ, Choi MJ, Gelber AC, Charleston J, Norkus EP, et al. The effects of vitamin C supplementation on serum concentrations of uric acid: results of a randomized controlled trial. Arthritis Rheum. 2005;52:1843–7.

    PubMed  CAS  Google Scholar 

  165. Stein HB, Hasan A, Fox IH. Ascorbic acid-induced uricosuria: a consequence of megavitamin therapy. Ann Intern Med. 1976;84:355–8.

    Google Scholar 

  166. Berger L, Gerson CD, Yu TF. The effect of ascorbic acid on uric acid excretion with a commentary on the renal handling of ascorbic acid. Am J Med. 1977;62: 71–6.

    PubMed  CAS  Google Scholar 

  167. Mitch WE, Johnson MW, Kirshenbaum JM, Lopez RE. Effect of large doses of ascorbic acid on uric acid excretion by normal subjects. Clin Pharmacol Ther. 1981;29:318–21.

    PubMed  CAS  Google Scholar 

  168. Stamp LK, O’Donnell JL, Frampton C, Drake J, Zhang M, Chapman PT. Clinically insignificant effect of supplemental vitamin C on serum urate in patients with gout: a pilot randomized controlled trial. Arthritis Rheum. 2013;65:1636–42.

    PubMed  CAS  Google Scholar 

  169. Choi HK, Gao X, Curhan G. Vitamin C intake and the risk of gout in men: a prospective study. Arch Intern Med. 2009;169:502–7.

    PubMed  Google Scholar 

  170. Gao X, Curhan G, Forman JP, Ascherio A, Choi HK. Vitamin C intake and serum uric acid concentration in men. J Rheumatol. 2008;35:1853–8.

    PubMed  CAS  Google Scholar 

  171. Jacob RA, Spinozzi GM, Simon VA, Kelley DS, Prior RL, Hess-Pierce B, et al. Consumption of cherries lowers plasma urate in healthy women. J Nutr. 2003;133:1826–9.

    PubMed  CAS  Google Scholar 

  172. Zhang Y, Neogi T, Chen C, Chaisson C, Hunter DJ, Choi HK. Cherry consumption and decreased risk of recurrent gout attacks. Arthritis Rheum. 2012;64: 4004–11.

    PubMed  CAS  Google Scholar 

  173. Schlesinger N, Ron Y, Chen CC. Do cherries reduce acute gouty attacks in patients with gouty arthritis? [abstract]. Ann Rheum Dis. 2007;67 Suppl 3:0742.

    Google Scholar 

  174. Schlesinger N, Schlesinger M. Previously reported prior studies of cherry juice concentrate for gout flare prophylaxis: comment on the article by Zhang et al. Arthritis Rheum. 2013;65:1135–6.

    PubMed  Google Scholar 

  175. Schlesinger N, Rabinowitz R, Schlesinger M. Pilot studies of cherry juice concentrate for gout flare prophylaxis. J Arthritis. 2012;1:1–5.

    Google Scholar 

  176. Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20: 843–52.

    PubMed  CAS  Google Scholar 

  177. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301: 39–51.

    PubMed  CAS  Google Scholar 

  178. Klein EA, Thompson Jr IM, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E cancer prevention trial (SELECT). JAMA. 2011;306:1549–56.

    PubMed  CAS  Google Scholar 

  179. Miller 3rd ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.

    PubMed  CAS  Google Scholar 

  180. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, The HOPE and HOPE TOO Trial Investigators, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47.

    PubMed  Google Scholar 

  181. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33.

    PubMed  CAS  Google Scholar 

  182. Moyad MA. Selenium and vitamin E supplements for prostate cancer: evidence or embellishment? Urology. 2002;59(4 Suppl 1):9–19.

    PubMed  Google Scholar 

  183. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, NASH CRN, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85.

    PubMed  CAS  Google Scholar 

  184. Pacana T, Sanyal AJ. Vitamin E and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2012;15:641–8.

    PubMed  CAS  Google Scholar 

  185. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. ARED Report No. 8. Arch Ophthalmol. 2001;119:1417–36.

    Google Scholar 

  186. Thamilselvan S, Menon M. Vitamin E therapy prevent hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int. 2005;96:117–26.

    PubMed  CAS  Google Scholar 

  187. Huang HS, Chen J, Chen CF, Ma MC. Vitamin E attenuates crystal formation in rat kidneys: role of renal tubular cell death and crystallization inhibitors. Kidney Int. 2006;70:699–710.

    PubMed  CAS  Google Scholar 

  188. Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M. Heavy elements in urinary stones. Urol Res. 2007;35:179–84.

    PubMed  CAS  Google Scholar 

  189. Trinchieri A, Mandressi A, Luongo P, Longo G, Pisani E. The influence of diet on urinary risk factors for stones in healthy subjects and idiopathic renal calcium stone formers. Br J Urol. 1991;67:230–6.

    PubMed  CAS  Google Scholar 

  190. Johnson AR, Munoz A, Gottlieb JL, Jarrard DF. High dose zinc increases hospital admissions due to genitourinary complications. J Urol. 2007;177:639–43.

    PubMed  CAS  Google Scholar 

  191. Tang J, McFann K, Chonchol M. Dietary zinc intake and kidney stone formation: evaluation of NHANES III. Am J Nephrol. 2012;36:549–53.

    PubMed  Google Scholar 

  192. Curhan GC, Willett WC, Knight EL, Stampfer MJ. Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Arch Intern Med. 2004;164:885–8891.

    PubMed  Google Scholar 

  193. Breslau NA, Brinkley L, Hill KD, Pak CY. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol Metab. 1988;66:140–6.

    PubMed  CAS  Google Scholar 

  194. Trinchieri A, Mandressi A, Luongo P, Rovera F, Longo G. Urinary excretion of citrate, glycosaminoglycans, magnesium and zinc in relation to age and sex in normal subjects and in patients who form calcium stones. Scand J Urol Nephrol. 1992;26:379–86.

    PubMed  CAS  Google Scholar 

  195. Lagiou P, Wuu J, Trichopoulou A, Hsieh C-C, Adami H-O, Trichopoulos D. Diet and benign prostatic hyperplasia: a study in Greece. Urology. 1999;54:284–90.

    PubMed  CAS  Google Scholar 

  196. Leitzmann MF, Stampfer MJ, Wu K, Colditz GA, Willett WC, Giovannucci EL. Zinc supplement use and risk of prostate cancer. J Natl Cancer Inst. 2002;95:1004–7.

    Google Scholar 

  197. Fashner J, Ericson K, Werner S. Treatment of the common cold in children and adults. Am Fam Physician. 2012;86:153–9.

    PubMed  Google Scholar 

  198. Mora B, Iannuzzi M, Lang T, Steinlechner B, Barker R, Dobrovits M, et al. Auricular acupressure as a treatment for anxiety before extracorporeal shock wave lithotripsy in the elderly. J Urol. 2007;178:160–4.

    PubMed  Google Scholar 

  199. Wang SM, Punjala M, Weiss D, Anderson K, Kalin ZN. Acupuncture as an adjunct for sedation during lithotripsy. J Altern Complement Med. 2007;13: 241–6.

    PubMed  Google Scholar 

  200. Miyaoka R, Monga M. Use of traditional Chinese medicine in the management of urinary stone disease. Int Braz J Urol. 2009;35:396–405.

    PubMed  Google Scholar 

  201. Kessler T, Jansen B, Hesse A. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur J Clin Nutr. 2002;56:1020–3.

    PubMed  CAS  Google Scholar 

  202. Ghalayini IF, Al-Ghazo MA, Harfell MN. Prophylaxis and therapeutic effects of raspberry (Rubus idaeus) on renal stone formation in Balb/c mice. Int Braz J Urol. 2011;37:259–66.

    PubMed  Google Scholar 

  203. Mechlin C, Kalorin C, Asplin J, White M. Splenda® improves tolerance of oral potassium citrate supplementation for prevention of stone formation: results of a randomized double-blind trial. J Endourol. 2011;25:1541–5.

    PubMed  Google Scholar 

  204. Vezzoli G, Terranegra A, Arcidiacono T, Soldati L. Genetics and calcium nephrolithiasis. Kidney Int. 2011;80:587–93.

    PubMed  CAS  Google Scholar 

  205. Miyaoka R, Ortiz-Alvarado O, Kriedberg C, Alanee S, Chotikawanich E, Monga M. Correlation between stress and kidney stone disease. J Endourol. 2012;26:551–5.

    PubMed  Google Scholar 

  206. Najem GR, Seebode JJ, Samady AJ, Feuerman M, Friedman L. Stressful life events and risk of symptomatic kidney stones. Int J Epidemiol. 1997;26: 1017–23.

    PubMed  CAS  Google Scholar 

  207. Thuy AB, Blizzard L, Schmidt MD, Luc PH, Granger RH, Dwyer T. The association between smoking and hypertension. J Hypertens. 2010;28:245–50.

    PubMed  CAS  Google Scholar 

  208. Virdis A, Giannarelli C, Neves MF, Taddei S, Ghiadoni L. Cigarette smoking and hypertension. Curr Pharm Des. 2010;16:2518–25.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moyad, M.A. (2014). Lifestyle Changes, CAM, and Kidney Stones: Heart Health = Kidney Health. In: Complementary & Alternative Medicine for Prostate and Urologic Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8492-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8492-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8491-2

  • Online ISBN: 978-1-4614-8492-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics