Skip to main content

MicroRNA SNPs in Cancer

  • Chapter
  • First Online:
Book cover Non-coding RNAs and Cancer
  • 1589 Accesses

Abstract

MiRNAs could serve as the regulators of cell events, including such as differentiation, propagation, and apoptosis. MiRNAs could act as natural oncogenes or tumor suppressor genes. Whether a particular miRNA serves as either could almost be moot when the additional problems of SNPs enter the fray. A miRNA involved with SNPs (miR-SNPs) on any regulatory level, whether naturally cancer-inducing or not, could easily undergo an oncogenic transformation. This chapter reviews targets of miRNAs and the miRNAs themselves frequently containing SNPs reflecting different risks and markers of cancer with emphasis on familial groups and populations of shared heredity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.mirbase.org/. 2011 [updated 2010 September; cited 2011 Jan 27]; Available from: http://www.mirbase.org/.

  2. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    Article  PubMed  CAS  Google Scholar 

  3. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010;24(10):992–1009.

    Article  PubMed  CAS  Google Scholar 

  4. Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA. 2010;16(12):2493–502.

    Article  PubMed  CAS  Google Scholar 

  5. Lee EK, Gorospe M. Coding region: the neglected post-transcriptional code. RNA Biol. 2011;8(1):44–8.

    Article  PubMed  CAS  Google Scholar 

  6. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA—target recognition. PLoS Biol. 2005;3(3):e85.

    Article  PubMed  Google Scholar 

  7. Bartel DP. MicroRNAs: target recognition and regulatory function. Cell. 2009;136:215–33.

    Article  PubMed  CAS  Google Scholar 

  8. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet. 2001;27(3):234–6.

    Article  PubMed  CAS  Google Scholar 

  9. Milne RL, Antoniou AC. Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers. Ann Oncol. 2011;22 Suppl 1:i11–7.

    Article  PubMed  Google Scholar 

  10. Easton DF, Eeles RA. Genome-wide association studies in cancer. Hum Mol Genet. 2008;17(R2):R109–15.

    Article  PubMed  CAS  Google Scholar 

  11. Varghese JS, Easton DF. Genome-wide association studies in common cancers—what have we learnt? Curr Opin Genet Dev. 2010;20(3):201–9.

    Article  PubMed  CAS  Google Scholar 

  12. Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT. KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer. 2010;69(1):51–3.

    Article  PubMed  CAS  Google Scholar 

  13. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753–6.

    Article  PubMed  CAS  Google Scholar 

  14. Wynendaele J, Böhnke A, Leucci E, Nielsen SJ, Lambertz I, Hammer S, et al. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res. 2010;70(23):9641–9.

    Article  PubMed  CAS  Google Scholar 

  15. Tsang WP, Kwok TT. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis. 2009;30(6):953–9.

    Article  PubMed  CAS  Google Scholar 

  16. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs [mdash] the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9(4):293–302.

    Article  PubMed  CAS  Google Scholar 

  17. Spizzo R, Nicoloso MS, Croce CM, Calin GA. SnapShot: MicroRNAs in cancer. Cell. 2009;137(3):586–e1.

    Article  PubMed  CAS  Google Scholar 

  18. Xiang J, Wu J. Feud or friend? The role of the miR-17-92 cluster in tumorigenesis. Curr Genomics. 2010;11:129–35.

    Article  PubMed  CAS  Google Scholar 

  19. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  PubMed  CAS  Google Scholar 

  20. Wu M, Jolicoeur N, Li Z, Zhang L, Fortin Y, L’Abbe D, et al. Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis. 2008;29(9):1710–6.

    Article  PubMed  CAS  Google Scholar 

  21. Landi D, Gemignani F, Barale R, Landi S. A catalog of polymorphisms falling in microRNA-binding regions of cancer genes. DNA Cell Biol. 2008;27(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  22. Yazici H, Zipprich J, Peng T, Akisik EZ, Tigli H, Isin M, et al. Investigation of the miR16-1 (C > T) + 7 substitution in seven different types of cancer from three ethnic groups. J Oncol. 2009;2009:827532.

    Google Scholar 

  23. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis. 2008;29(7):1306–11.

    Article  PubMed  CAS  Google Scholar 

  24. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801.

    Article  PubMed  CAS  Google Scholar 

  25. Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis. J Biochem. 2010;148(4):381–92.

    PubMed  CAS  Google Scholar 

  26. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33.

    Article  PubMed  CAS  Google Scholar 

  27. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43.

    Article  PubMed  Google Scholar 

  28. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A. 2006;103(13):5078–83.

    Article  PubMed  CAS  Google Scholar 

  29. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.

    Article  PubMed  CAS  Google Scholar 

  30. Meiri E, Levy A, Benjamin H, Ben-David M, Cohen L, Dov A, et al. Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res. 2010;38(18):6234–46.

    Article  PubMed  CAS  Google Scholar 

  31. Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008;29(10):1963–6.

    Article  PubMed  CAS  Google Scholar 

  32. Hu Z, Liang J, Wang Z, Tian T, Zhou X, Chen J, et al. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat. 2009;30(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  33. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402.

    Article  PubMed  CAS  Google Scholar 

  34. Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A. 2007;104(9):3300–5.

    Article  PubMed  CAS  Google Scholar 

  35. Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet. 2007;16(9):1124–31.

    Article  PubMed  CAS  Google Scholar 

  36. Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006;38(12):1452–6.

    Article  PubMed  CAS  Google Scholar 

  37. Tchatchou S, Jung A, Hemminki K, Sutter C, Wappenschmidt B, Bugert P, et al. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis. 2009;30(1):59–64.

    Article  PubMed  CAS  Google Scholar 

  38. Wacholder S, Struewing JP, Hartge P, Greene MH, Tucker MA. Breast cancer risks for BRCA1/2 carriers. Science. 2004;306(5705):2187–91. author reply 2187–91.

    PubMed  Google Scholar 

  39. Robles-Diaz L, Goldfrank DJ, Kauff ND, Robson M, Offit K. Hereditary ovarian cancer in Ashkenazi Jews. Fam Cancer. 2004;3(3–4):259–64.

    Article  PubMed  CAS  Google Scholar 

  40. Narod SA. Modifiers of risk of hereditary breast cancer. Oncogene. 2006;25(43):5832–6.

    Article  PubMed  CAS  Google Scholar 

  41. Levy-Lahad E, Friedman E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2007;96(1):11–5.

    Article  PubMed  CAS  Google Scholar 

  42. Kontorovich T, Levy A, Korostishevsky M, Nir U, Friedman E. Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer. 2010;127(3):589–97.

    Article  PubMed  CAS  Google Scholar 

  43. Sætrom P, Biesinger J, Li SM, Smith D, Thomas LF, Majzoub K, et al. A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res. 2009;69(18):7459–65.

    Article  PubMed  Google Scholar 

  44. Yang R, Schlehe B, Hemminki K, Sutter C, Bugert P, Wappenschmidt B, et al. A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat. 2010;121(3):693–702.

    Article  PubMed  Google Scholar 

  45. Prevention CfDCa. United States Cancer Statistics. Department of Health and Human Services; 2007 [updated 2007; cited 2 Nov 2011]; Available from: http://apps.nccd.cdc.gov/uscs/toptencancers.aspx.

  46. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68(20):8535–40.

    Article  PubMed  CAS  Google Scholar 

  47. Kim JS, Choi YY, Jin G, Kang HG, Choi JE, Jeon HS, et al. Association of a common AGO1 variant with lung cancer risk: a two-stage case-control study. Mol Carcinog. 2010;49(10):913–21.

    Article  PubMed  CAS  Google Scholar 

  48. Xu T, Zhu Y, Wei QK, Yuan Y, Zhou F, Ge YY, et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis. 2008;29(11):2126–31.

    Article  PubMed  CAS  Google Scholar 

  49. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.

    Article  PubMed  CAS  Google Scholar 

  50. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  PubMed  CAS  Google Scholar 

  51. Li X-D, Li Z-G, Song X-X, Liu C-F. A variant in microRNA-196a2 is associated with susceptibility to hepatocellular carcinoma in Chinese patients with cirrhosis. Pathology. 2010;42(7):669–73.

    Article  PubMed  CAS  Google Scholar 

  52. Qi P, Dou TH, Geng L, Zhou FG, Gu X, Wang H, et al. Association of a variant in MIR 196A2 with susceptibility to hepatocellular carcinoma in male Chinese patients with chronic hepatitis B virus infection. Hum Immunol. 2010;71(6):621–6.

    Article  PubMed  CAS  Google Scholar 

  53. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  PubMed  Google Scholar 

  54. Zhou X, Chen X, Hu L, Han S, Qiang F, Wu Y, et al. Polymorphisms involved in the miR-218-LAMB3 pathway and susceptibility of cervical cancer, a case-control study in Chinese women. Gynecol Oncol. 2010;117(2):287–90.

    Article  PubMed  CAS  Google Scholar 

  55. Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X. Evaluation of genetic variants in MicroRNA-related genes and risk of bladder cancer. Cancer Res. 2008;68(7):2530–7.

    Article  PubMed  CAS  Google Scholar 

  56. Shpargel KB, Matera AG. Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci U S A. 2005;102(48):17372–7.

    Article  PubMed  CAS  Google Scholar 

  57. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002;16(6):720–8.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang X, Yang H, Lee JJ, Kim E, Lippman SM, Khuri FR, et al. MicroRNA-related genetic variations as predictors for risk of second primary tumor and/or recurrence in patients with early-stage head and neck cancer. Carcinogenesis. 2010;31(12):2118–23.

    Article  PubMed  CAS  Google Scholar 

  59. Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, et al. Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol. 2004;6(6):555–62.

    Article  PubMed  CAS  Google Scholar 

  60. Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, et al. PolymiRTS database: linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res. 2007;35 Suppl 1:D51–4.

    Article  PubMed  CAS  Google Scholar 

  61. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  62. Janzen NK, Kim HL, Figlin RA, Belldegrun AS. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am. 2003;30(4):843–52.

    Article  PubMed  Google Scholar 

  63. Lin J, Horikawa Y, Tamboli P, Clague J, Wood CG, Wu X. Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis. 2010;31(10):1805–12.

    Article  PubMed  CAS  Google Scholar 

  64. Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J, et al. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res. 2008;14(23):7956–62.

    Article  PubMed  CAS  Google Scholar 

  65. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105(20):7269–74.

    Article  PubMed  CAS  Google Scholar 

  66. Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, et al. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci U S A. 2009;106(5):1502–5.

    Article  PubMed  CAS  Google Scholar 

  67. Guo H, Wang K, Xiong G, Hu H, Wang D, Xu X, et al. A functional variant in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam Cancer. 2010;9(4):599–603.

    Article  PubMed  Google Scholar 

  68. George GP, Gangwar R, Mandal RK, Sankhwar SN, Mittal RD. Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol Biol Rep. 2010;38(3):1609–15.

    Article  PubMed  Google Scholar 

  69. Fishman J, Osborne MP, Telang NT. The role of estrogen in mammary carcinogenesis. Ann N Y Acad Sci. 1995;768:91–100.

    Article  PubMed  CAS  Google Scholar 

  70. Martin G, Davio C, Rivera E, Melito G, Cricco G, Andrade N, et al. Hormone dependence of mammary tumors induced in rats by intraperitoneal NMU injection. Cancer Invest. 1997;15(1):8–17.

    Article  PubMed  CAS  Google Scholar 

  71. Brendle A, Lei H, Brandt A, Johansson R, Enquist K, Henriksson R, et al. Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis. 2008;29(7):1394–9.

    Article  PubMed  CAS  Google Scholar 

  72. Boni V, Zarate R, Villa JC, Bandres E, Gomez MA, Maiello E, et al. Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan. Pharmacogenomics J. 2010;11(6):429–36.

    Article  PubMed  Google Scholar 

  73. Mishra PJ. MicroRNA polymorphisms: a giant leap towards personalized medicine. Per Med. 2009;6(2):119–25.

    Article  PubMed  CAS  Google Scholar 

  74. Rossbach M. Small non-coding RNAs as novel therapeutics. Curr Mol Med. 2010;10(4):361–8.

    Article  PubMed  CAS  Google Scholar 

  75. Mishra PJ, Humeniuk R, Longo-Sorbello GS, Banerjee D, Bertino JR. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A. 2007;104(33):13513–8.

    Article  PubMed  CAS  Google Scholar 

  76. Genetic Information Nondiscrimination Act of 2008. 2010; Available from: http://thomas.loc.gov/cgi-bin/bdquery/z?d110:h.r.00493.

  77. National Human Genome Research Institute. 2010; Available from: http://www.genome.gov/10002077.

  78. Bao B-Y, Pao J-B, Huang C-N, Pu Y-S, Chang T-Y, Lan Y-H, et al. Polymorphisms inside MicroRNAs and MicroRNA target sites predict clinical outcomes in prostate cancer patients receiving androgen-deprivation therapy. Clin Cancer Res. 2011;17(4):928–36.

    Article  PubMed  CAS  Google Scholar 

  79. Chen H, Sun L-Y, Chen L-L, Zheng H-Q, Zhang Q-F. A variant in microRNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese. Intern Med J. 2012;42(6):e115–9.

    Article  PubMed  CAS  Google Scholar 

  80. Yazici H, Zipprich J, Peng T. Investigation of the miR16-1 (C > T) + 7 substitution in seven different types of cancer from three ethnic groups. J Oncol. 2009;2009:827532

    Google Scholar 

  81. Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, et al. Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34(4):1069–75.

    PubMed  CAS  Google Scholar 

  82. Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L, et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 2008;68(15):6416–24.

    Article  PubMed  CAS  Google Scholar 

  83. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 2009;125(11):2737–43.

    Article  PubMed  CAS  Google Scholar 

  84. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.

    Article  PubMed  CAS  Google Scholar 

  85. Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24(10):489–97.

    Article  PubMed  CAS  Google Scholar 

  86. Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009;37 Suppl 2:W600–5.

    Article  PubMed  CAS  Google Scholar 

  87. Yoshida T, Ono H, Kuchiba A, Saeki N, Sakamoto H. Genome-wide germline analyses on cancer susceptibility and GeMDBJ database: gastric cancer as an example. Cancer Sci. 2010;101(7):1582–9.

    Article  PubMed  CAS  Google Scholar 

  88. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, Y., Jin, P. (2014). MicroRNA SNPs in Cancer. In: Fabbri, M. (eds) Non-coding RNAs and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8444-8_8

Download citation

Publish with us

Policies and ethics