Skip to main content

Climate Change: Overview of Data Sources, Observed and Predicted Temperature Changes, and Impacts on Public and Environmental Health

  • Chapter
  • First Online:
Global Climate Change and Public Health

Part of the book series: Respiratory Medicine ((RM,volume 7))

Abstract

This chapter addresses the societal and the environmental impacts of climate change related to increasing surface temperatures on air quality and forest health. Increasing temperatures at and near the earth’s surface, due to both a warming climate and urban heat island effects, have been shown to increase ground-level ozone concentrations in cities across the U.S. In terms of forest health, elevated surface air temperatures and increased water stress are raising the possibility that forests world-wide are increasingly responding to warming climate conditions, which may lead to widespread tree mortality. The importance of climate datasets is also addressed, specifically as it relates to understanding the observed and predicted changes in surface temperatures at the global, regional and local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenzweig C, Casassa G, Imeson A, Karoly DJ, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P. Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate change 2007: impacts, adaptation and vulnerability contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007. p. 79–131.

    Google Scholar 

  2. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P. Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  3. Karl TR, Melillo JM, Peterson TC, editors. Global climate change impacts in the United States. New York: Cambridge University Press; 2009. p. 188.

    Google Scholar 

  4. Sanchez-Lugo A, Kennedy JJ, Berrisford P. Surface temperatures. In: State of the climate 2010. Bull Amer Meteor Soc. 2011;92:6:S36–7.

    Google Scholar 

  5. Hansen J, Ruedy R, Sato M, Lo K. Global surface temperature change. Rev Geophys. 2010;48, RG4004.

    Article  Google Scholar 

  6. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD. Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res. 2006;111, D12106.

    Article  Google Scholar 

  7. Smith TM, Peterson TC, Lawrimore J. Improvements to NOAA’s historical merged land-ocean surface temperature analyses (1880–2006). J Climate. 2008;21:2283–96.

    Article  Google Scholar 

  8. Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, Revich B, Woodward A. Human health. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007. p. 391–431.

    Google Scholar 

  9. Vose RS, Easterling DR, Gleason B. Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett. 2005;32, L23822.

    Article  Google Scholar 

  10. Kunkel KE, Bromirski PD, Brooks HE, Cavazos T, Douglas AV, Easterling DR, Emanuel KA, Groisman PYa, Holland GJ, Knutson TR, Kossin JP, Komar PD, Levinson DH, Smith RL. Observed changes in weather and climate extremes. In: Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL, editors. Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. A report by the US Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC; 2008.

    Google Scholar 

  11. Davis R, Knappenberger P, Novicoff W, Michaels P. Decadal changes in heat related human mortality in the eastern United States. Climate Res. 2002;22:175–84.

    Article  Google Scholar 

  12. Davis R, Knappenberger P, Michaels P, Novicoff W. Changing heat related mortality in the United States. Environ Health Perspect. 2003;111:1712–8.

    Article  PubMed  Google Scholar 

  13. Davis R, Knappenberger P, Michaels P, Novicoff W. Seasonality of climate-human mortality relationships in US cities and impacts of climate change. Climate Res. 2004;26:61–76.

    Article  Google Scholar 

  14. Menne MJ, Williams CN, Vose RS. The U.S. Historical Climatology Network monthly temperature data, version 2. Bull Amer Meteor Soc. 2009;90:993–1007.

    Article  Google Scholar 

  15. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C. Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  16. Morris CJG, Simmonds I. Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. Int J Climatol. 2000;20:1931–54.

    Article  Google Scholar 

  17. Bates DV. Ambient ozone and mortality. Epidemiology. 2005;16:427–9.

    Article  PubMed  Google Scholar 

  18. D’Amato G, Liccardi G, D’Amato M, Cazzola M. Outdoor air pollution, climatic changes and allergic bronchial asthma. Eur Respir J. 2002;20:763–76.

    Article  PubMed  Google Scholar 

  19. Weber RW. Mother nature strikes back: global warming, homeostasis, and implications for allergy. Ann Allergy Asthma Immunol. 2002;88:251–2.

    Article  PubMed  Google Scholar 

  20. Beggs PJ. Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy. 2004;34:1507–13.

    Article  PubMed  CAS  Google Scholar 

  21. Rybnicek O, Jaeger S. Ambrosia (ragweed) in Europe. ACI International. 2001;13:60–6.

    Google Scholar 

  22. Huynen M, Menne B. Phenology and human health: allergic disorders. Report of a WHO meeting in Rome, Italy, 16–17 Jan 2003. Health and Global Environmental Series EUR/03/5036791. Copenhagen: World Health Organization; 2003. p. 64.

    Google Scholar 

  23. Taramarcaz P, Lambelet B, Clot B, Keimer C, Hauser C. Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly. 2005;135:538–48.

    PubMed  CAS  Google Scholar 

  24. Cecchi L, Morabito M, Domeneghetti P, Crisci MA, Onorari M, Orlandini S. Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immunol. 2006;96:86–91.

    Article  PubMed  Google Scholar 

  25. Wan SQ, Yuan T, Bowdish S, Wallace L, Russell SD, Luo YQ. Response of an allergenic species Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. Am J Bot. 2002;89:1843–6.

    Article  PubMed  Google Scholar 

  26. Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol. 2002;88:279–82.

    Article  PubMed  Google Scholar 

  27. Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG. Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct Plant Biol. 2005;32:667–70.

    Article  CAS  Google Scholar 

  28. Ziska LH, Emche SD, Johnson EL, George K, Reed DR, Sicher RC. Alterations in the production and concentration of selected alkaloids as a function of rising atmospheric carbon dioxide and air temperature: implications for ethno-pharmacology. Glob Chang Biol. 2005;11:1798–807.

    Article  Google Scholar 

  29. Rogers C, Wayne P, Macklin E, Muilenberg M, Wagner C, Epstein P, Bazzaz F. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect. 2006;114:865–9.

    Article  PubMed  CAS  Google Scholar 

  30. Bonan GD. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2009;320:1444–9.

    Article  Google Scholar 

  31. Kurz WA, Apps MJ, Stocks BJ, Volney WJ. Global climate change: disturbance regimes and biospheric feedbacks of temperate and boreal forests. In: Woodwell GM, Mackenzie FT, editors. Biotic feedbacks in the global climatic system: will the warming feed the warming? Oxford: Oxford University Press; 1995.

    Google Scholar 

  32. Stocks BJ, Lee BS, Martell DL. Some potential carbon budget implications of fire management in the boreal forest. In: Apps MJ, Price DT, editors. Forest ecosystems, forest management and the global carbon cycle. Berlin: Springer; 1996.

    Google Scholar 

  33. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008;452:987–90.

    Article  PubMed  CAS  Google Scholar 

  34. White PS, Pickett STA. The ecology of natural disturbance and patch dynamics. Orlando: Academic; 1985.

    Google Scholar 

  35. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS. Regime shifts, resilience, and biodiversity in ecosystem management. Ann Rev Ecol Evol Syst. 2004;35:557–81.

    Article  Google Scholar 

  36. Schelhass MJ, Nabuurs GJ, Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol. 2003;9:1620–33.

    Article  Google Scholar 

  37. Youngblood A, Max T, Coe K. Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California. For Ecol Manage. 2004;199:191–217.

    Article  Google Scholar 

  38. Ritchie MW, Skinner CN, Hamilton TA. Probability of tree survival after wildfire in an interior pine forest of northern California: effects of thinning and prescribed fire. For Ecol Manage. 2007;247:200–8.

    Article  Google Scholar 

  39. Stephens SL, McIver JD, Boerner REJ, Fettig CJ, Fontaine JB, Hartsough BR, Kennedy P, Schwilk DW. Effects of forest fuel reduction treatments in the United States. Bioscience. 2012;62:549–60.

    Article  Google Scholar 

  40. Bhatti JS, Lal R, Apps MJ, Price MA. Climate change and managed ecosystems. Boca Raton, FL: CRC; 2006.

    Google Scholar 

  41. Shugart HH. A theory of forest dynamics: the ecological implications of forest succession models. New York, NY: Springer; 2003.

    Google Scholar 

  42. IPCC. Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  43. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhangm Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 2010;259:660–84.

    Article  Google Scholar 

  44. Martinez-Vilata J, Lloret F, Breshears DD. Drought-induced forest decline: causes, scope and implications. Biol Lett. 2012;8:689–91.

    Article  Google Scholar 

  45. Manion PD. Tree disease concepts. Englewood Cliffs, NJ: Prentice-Hall; 1981.

    Google Scholar 

  46. Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP, Harnik N, Leetmaa A, Lau NC, Li C, Velez J, Naik N. Model projections of an imminent transition to a more arid climate in southwestern North America. Science. 2007;316:1181–4.

    Article  PubMed  CAS  Google Scholar 

  47. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. Climate extremes: observations, modeling, and impacts. Science. 2000;289:2068–74.

    Article  PubMed  CAS  Google Scholar 

  48. Brunsfeld SJ, Sullivan J, Soltis DE, Soltis PS. Comparative phylogeography of northwestern North America: a synthesis. In: Antonovics J, Silvertown J, editors. Integrating ecology and evolution in a spatial context. Wiliston, VT: Blackwell; 2001.

    Google Scholar 

  49. Godbout J, Fazekas A, Newton CH, Yeh FC. Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. Mol Ecol. 2008;17:2463–75.

    Article  PubMed  CAS  Google Scholar 

  50. McKenney DW, Pedlar JH, Lawrence K, Campbell K, Hutchinson MF. Potential impacts of climate change on the distribution of North American trees. Bioscience. 2007;57:939–48.

    Article  Google Scholar 

  51. Rehfeldt GE, Crookston NL, Warwell MV, Evans JS. Empirical analyses of plant-climate relationships for the western United States. Int J Plant Sci. 2006;167:1123–50.

    Article  Google Scholar 

  52. Mattson Jr WJ, Addy ND. Phytophagous insects as regulators of forest primary production. Science. 1975;90:515–22.

    Article  Google Scholar 

  53. Schowalter TD. Insect herbivore relationship to the state of the host plant: biotic regulation of ecosystem nutrient cycling through ecological succession. Oikos. 1981;37:126–30.

    Article  Google Scholar 

  54. Fettig CJ, Klepzig KD, Billings RF, Munson AS, Nebeker TE, NegrĂ³n JF, Nowak JT. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For Ecol Manage. 2007;238:24–53.

    Article  Google Scholar 

  55. Coulson RN, Stephen FM. Impacts of insects in forest landscapes: implications for forest health management. In: Payne TD, editor. Invasive forest insects, introduced forest trees, and altered ecosystems: ecological pest management in global forests of a changing world. New York: Springer; 2006.

    Google Scholar 

  56. Bentz BJ, RĂ©gnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Lundquist J, NegrĂ³n JF, Seybold SJ. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience. 2010;60:602–13.

    Article  Google Scholar 

  57. Carnicera J, Colla M, Ninyerolac M, Pons X, SĂ¡nchez G, Peñuelasa J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA. 2011;108:1474–8.

    Article  Google Scholar 

  58. BĂ¼ntgen U, Frank D, Liebhold A, Johnson D, Carrer M, Urbinati C, Grabner M, Nicolussi K, Levanic T, Esper J. Three centuries of insect outbreaks across the European Alps. New Phytol. 2009;182:929–41.

    Article  PubMed  Google Scholar 

  59. Bentz BJ, Allen CD, Ayres M, Berg E, Carroll A, Hansen M, Hicke J, Joyce L, Logan J, MacFarlane W, MacMahon J, Munson AS, NegrĂ³n JF, Paine TD, Powell J, Raffa KF, RĂ©gnière J, Reid M, Romme W, Seybold SJ, Six DL, Tomback D, Vandygriff J, Veblen T, White M, Witcosky J, Wood DL. Bark beetle outbreaks in western North America: causes and consequences. Salt Lake City: University of Utah Press; 2009.

    Google Scholar 

  60. Powell JA, Logan JA. Insect seasonality-circle map analysis of temperature-driven life cycles. Theor Popul Biol. 2005;67:161–79.

    Article  PubMed  Google Scholar 

  61. Berg EE, Henry JD, Fastie CL, De Volder AD, Matsuoka SM. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. For Ecol Manage. 2006;227:219–32.

    Article  Google Scholar 

  62. Evangelista PH, Kumar S, Stohlgren TJ, Young NE. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. For Ecol Manage. 2011;262:307–16.

    Article  Google Scholar 

  63. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ. Climate change and forest diseases. Plant Pathol. 2011;60:133–49.

    Article  Google Scholar 

  64. Sinclair WA, Lyon HH, Johnson WT. Diseases of trees and shrubs. Ithaca: Cornell University Press; 1987.

    Google Scholar 

  65. Venette RC. Implication of global climate change on the distribution and activity of Phytophthora ramorum. In: McManus KA, Gottschalk KW, editors. Proceedings of the 20th U.S. Department of Agriculture Interagency Research Forum on Invasive Species 2009. NRS-P-51, 58–9. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station; 2009.

    Google Scholar 

  66. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and earlier spring increase western U.S. forest wildfire activity. Science. 2006;313:940–3.

    Article  PubMed  CAS  Google Scholar 

  67. Jenkins MJ, Hebertson E, Page W, Jorgensen CA. Bark beetles, fuels, fires and implications for forest management in the Intermountain West. For Ecol Manage. 2008;254:16–34.

    Article  Google Scholar 

  68. Allan BF, Keesing F, Ostfeld R. Effect of forest fragmentation on Lyme disease risk. Conserv Biol. 2003;17:267–72.

    Article  Google Scholar 

  69. McDowell NG, Pockman WT, Allen C, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams D, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 2008;178:719–39.

    Article  PubMed  Google Scholar 

  70. Peterson DL, Millar CI, Joyce LA, Furniss MJ, Haolosky JE, Neilson RP, Morelli TL. Responding to climate change on national forests: a guidebook for developing adaptation options. PNW-GTR-855. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station; 2011.

    Google Scholar 

  71. Smith TM, Reynolds RW. A global merged land–air–sea surface temperature reconstruction based on historical observations (1880–1997). Journal of Climate, 2005; 18: 2021–36 (doi: http://dx.doi.org/10.1175/JCLI3362.1).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Levinson M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levinson, D.H., Fettig, C.J. (2014). Climate Change: Overview of Data Sources, Observed and Predicted Temperature Changes, and Impacts on Public and Environmental Health. In: Pinkerton, K., Rom, W. (eds) Global Climate Change and Public Health. Respiratory Medicine, vol 7. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8417-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8417-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8416-5

  • Online ISBN: 978-1-4614-8417-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics