Skip to main content

Choroidal Neovascularization

  • Chapter
  • First Online:
Pathologic Myopia
  • 2549 Accesses

Abstract

High myopia is associated with excessive and progressive elongation of the globe, resulting in a variety of fundus changes that lead to visual impairment; one of the most common and severe is choroidal neovascularization. It is manifested by loss of acuity, scotomata, and distortion of vision. Several factors are frequently found in myopic CNV as compared with other common forms of CNV, such as that due to age-related macular degeneration. A common precursor to neovascularization is lacquer cracks, which are breaks in Bruch’s membrane. The size of the neovascularization is often small in highly myopic eyes, there is less evident leakage during fluorescein angiography, and optical coherence tomography usually does not show much fluid in either the subretinal space or within the retina. Unfortunately the patients generally are young, in the most productive periods of their lives. Treatment for CNV used to involve thermal laser photocoagulation, which caused expanding areas of atrophy. Photodynamic therapy has been used but with disappointing results. Introduction of therapies directed against vascular endothelial growth factor caused a large change in the outcomes for patients with myopic CNV. In this chapter the characteristics of myopic CNV is presented. The history of treatments for myopic CNV is discussed in detail, and a general approach to patients with myopic CNV is shown. Finally, a hypothesis is generated to explain the frequent observation of atrophy following treatment for myopic choroidal neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs E. Der centrale schwarze Fleck bei Myopie. Zeitschrift für Augenheilkunde. 1901;5:171–8.

    Google Scholar 

  2. Lloyd RI. Clinical studies of the myopic macula. Trans Am Ophthalmol Soc. 1953;51:273–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Focosi M, Brancato R, Frosini R. Serous maculopathy of myopes. Fluorescein retinography and possibilities for treatment. Doc Ophthalmol. 1973;34:157–64.

    CAS  PubMed  Google Scholar 

  4. Levy JH, Pollock HM, Curtin BJ. The Fuchs’ spot: an ophthalmoscopic and fluorescein angiographic study. Ann Ophthalmol. 1977;9:1433–43.

    CAS  PubMed  Google Scholar 

  5. Klein RM, Curtin BJ. Lacquer crack lesions in pathologic myopia. Am J Ophthalmol. 1975;79:386–92.

    CAS  PubMed  Google Scholar 

  6. Klein RM, Green S. The development of lacquer cracks in pathologic myopia. Am J Ophthalmol. 1988;106:282–5.

    CAS  PubMed  Google Scholar 

  7. Hayasaka S, Uchida M, Setogawa T. Subretinal hemorrhages with or without choroidal neovascularization in the maculas of patients with pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 1990;228:277–80.

    CAS  PubMed  Google Scholar 

  8. Curtin BJ. The Myopias. Basic science and clinical management. Philadelphia: Harper & Row; 1985.

    Google Scholar 

  9. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148:445–50.

    PubMed  Google Scholar 

  10. Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50:3876–80.

    PubMed  Google Scholar 

  11. Ikuno Y, Maruko I, Yasuno Y, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:5536–40.

    PubMed  Google Scholar 

  12. Nishida Y, Fujiwara T, Imamura Y, Lima LH, Kurosaka D, Spaide RF. Choroidal thickness and visual acuity in highly myopic eyes. Retina. 2012;32:1229–36.

    PubMed  Google Scholar 

  13. Ohno-Matsui K, Yoshida T, Futagami S, et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol. 2003;87:570–3.

    CAS  PubMed  Google Scholar 

  14. Ikuno Y, Sayanagi K, Soga K, et al. Lacquer crack formation and choroidal neovascularization in pathologic myopia. Retina. 2008;28:1124–31.

    PubMed  Google Scholar 

  15. Heriot WJ, Henkind P, Bellhorn RW, Burns MS. Choroidal neovascularization can digest Bruch’s membrane. A prior break is not essential. Ophthalmology. 1984;91:1603–8.

    CAS  PubMed  Google Scholar 

  16. Verteporfin in Photodynamic Therapy Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin. 1-year results of a randomized clinical trial – VIP report no. 1. Ophthalmology. 2001;108:841–52.

    Google Scholar 

  17. Verteporfin in Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am J Ophthalmol. 2001;131:541–60.

    Google Scholar 

  18. Hayashi K, Shimada N, Moriyama M, Hayashi W, Tokoro T, Ohno-Matsui K. Two-year outcomes of intravitreal bevacizumab for choroidal neovascularization in Japanese patients with pathologic myopia. Retina. 2012;32:687–95.

    CAS  PubMed  Google Scholar 

  19. Keane PA, Liakopoulos S, Chang KT, et al. Comparison of the optical coherence tomographic features of choroidal neovascular membranes in pathological myopia versus age-related macular degeneration, using quantitative subanalysis. Br J Ophthalmol. 2008;92:1081–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Vance SK, Khan S, Klancnik JM, Freund KB. Characteristic spectral-domain optical coherence tomography findings of multifocal choroiditis. Retina. 2011;31:717–23.

    PubMed  Google Scholar 

  21. Haen SP, Spaide RF. Fundus autofluorescence in multifocal choroiditis and panuveitis. Am J Ophthalmol. 2008;145:847–53.

    PubMed  Google Scholar 

  22. Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. Am J Ophthalmol. 1971;71:42–53.

    CAS  PubMed  Google Scholar 

  23. Rabb MF, Garoon I, LaFranco FP. Myopic macular degeneration. Int Ophthalmol Clin. 1981;21:51–69.

    CAS  PubMed  Google Scholar 

  24. Hotchkiss ML, Fine SL. Pathologic myopia and choroidal neovascularization. Am J Ophthalmol. 1981;91:177–83.

    CAS  PubMed  Google Scholar 

  25. Fried M, Siebert A, Meyer-Schwickerath G. A natural history of Fuchs’ spot: a long-term follow-up study. Doc Ophthalmol. 1981;28:215–21.

    Google Scholar 

  26. Cohen SY, Laroche A, Leguen Y, Soubrane G, Coscas GJ. Etiology of choroidal neovascularization in young patients. Ophthalmology. 1996;103:1241–4.

    CAS  PubMed  Google Scholar 

  27. Steidl SM, Pruett RC. Macular complications associated with posterior staphyloma. Am J Ophthalmol. 1997;123:181–7.

    CAS  PubMed  Google Scholar 

  28. Shih YF, Ho TC, Hsiao CK, Lin LL. Visual outcomes for high myopic patients with or without myopic maculopathy: a 10 year follow up study. Br J Ophthalmol. 2006;90:546–50.

    PubMed  Google Scholar 

  29. Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109:704–11.

    PubMed  Google Scholar 

  30. Gao LQ, Liu W, Liang YB, et al. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan Eye Study. Arch Ophthalmol. 2011;129:1199–204.

    PubMed  Google Scholar 

  31. Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia. Retina. 1992;12:127–33.

    CAS  PubMed  Google Scholar 

  32. Wright RE, Freudenthal W. Angioid streaks with pseudoxanthoma elasticum (Gronblad-Strandberg syndrome). Proc R Soc Med. 1943;36:290–1.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Spraul CW, Lang GE, Grossniklaus HE, Lang GK. Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol. 1999;44 Suppl 1:S10–32.

    PubMed  Google Scholar 

  34. Grossniklaus HE, Green WR. Choroidal neovascularization. Am J Ophthalmol. 2004;137:496–503.

    PubMed  Google Scholar 

  35. Hampton GR, Kohen D, Bird AC. Visual prognosis of disciform degeneration in myopia. Ophthalmology. 1983;90:923–6.

    CAS  PubMed  Google Scholar 

  36. Avila MP, Weiter JJ, Jalkh AE, Trempe CL, Pruett RC, Schepens CL. Natural history of choroidal neovascularization in degenerative myopia. Ophthalmology. 1984;91:1573–81.

    CAS  PubMed  Google Scholar 

  37. Tabandeh H, Flynn Jr HW, Scott IU, et al. Visual acuity outcomes of patients 50 years of age and older with high myopia and untreated choroidal neovascularization. Ophthalmology. 1999;106:2063–7.

    CAS  PubMed  Google Scholar 

  38. Bottoni F, Tilanus M. The natural history of juxtafoveal and subfoveal choroidal neovascularization in high myopia. Int Ophthalmol. 2001;24:249–55.

    CAS  PubMed  Google Scholar 

  39. Yoshida T, Ohno-Matsui K, Yasuzumi K, et al. Myopic choroidal neovascularization: a 10-year follow-up. Ophthalmology. 2003;110:1297–305.

    PubMed  Google Scholar 

  40. Hayashi K, Ohno-Matsui K, Yoshida T, et al. Characteristics of patients with a favorable natural course of myopic choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2005;243:13–9.

    PubMed  Google Scholar 

  41. Secretan M, Kuhn D, Soubrane G, Coscas G. Long-term visual outcome of choroidal neovascularization in pathologic myopia: natural history and laser treatment. Eur J Ophthalmol. 1997;7:307–16.

    CAS  PubMed  Google Scholar 

  42. Yoshida T, Ohno-Matsui K, Ohtake Y, et al. Long-term visual prognosis of choroidal neovascularization in high myopia: a comparison between age groups. Ophthalmology. 2002;109:712–9.

    PubMed  Google Scholar 

  43. Gass JD. Pathogenesis of disciform detachment of the neuroepithelium. Am J Ophthalmol. 1967;63(Suppl):1–139.

    PubMed  Google Scholar 

  44. L’Esperance Jr FA. The treatment of ophthalmic vascular disease by argon laser photocoagulation. Trans Am Acad Ophthalmol Otolaryngol. 1969;73:1077–96.

    PubMed  Google Scholar 

  45. L’Esperance Jr FA. Clinical photocoagulation with the krypton laser. Arch Ophthalmol. 1972;87:693–700.

    PubMed  Google Scholar 

  46. Little HL, Zweng HC, Peabody RR. Argon laser slit-lamp retinal photocoagulation. Trans Am Acad Ophthalmol Otolaryngol. 1970;74:85–97.

    CAS  PubMed  Google Scholar 

  47. Patz A, Maumenee AJ, Ryan SJ. Argon laser photocoagulation in macular diseases. Trans Am Ophthalmol Soc. 1971;69:71–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Gass JD. Photocoagulation of macular lesions. Trans Am Acad Ophthalmol Otolaryngol. 1971;75:580–608.

    CAS  PubMed  Google Scholar 

  49. Macular Photocoagulation Study Group. Argon laser photocoagulation for senile macular degeneration. Results of a randomized clinical trial. Arch Ophthalmol. 1982;100:912–8.

    Google Scholar 

  50. Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Three-year results from randomized clinical trials. Arch Ophthalmol. 1986;104:694–701.

    Google Scholar 

  51. Macular Photocoagulation Study Group. Laser photocoagulation for juxtafoveal choroidal neovascularization. Five-year results from randomized clinical trials. Arch Ophthalmol. 1994;112:500–9.

    Google Scholar 

  52. Zimmer-Galler IE, Bressler NM, Bressler SB. Treatment of choroidal neovascularization: updated information from recent macular photocoagulation study group reports. Int Ophthalmol Clin. 1995;35:37–57.

    CAS  PubMed  Google Scholar 

  53. Blackhurst DW, Maguire MG. Reproducibility of refraction and visual acuity measurement under a standard protocol. The Macular Photocoagulation Study Group. Retina. 1989;9:163–9.

    CAS  PubMed  Google Scholar 

  54. Berkow JW. Subretinal neovascularization in senile macular degeneration. Am J Ophthalmol. 1984;97:143–7.

    CAS  PubMed  Google Scholar 

  55. Willan AR, Cruess AF, Ballantyne M. Argon green vs. krypton red laser photocoagulation for extrafoveal choroidal neovascularization secondary to age-related macular degeneration: 3-year results of a multicentre randomized trial. Canadian Ophthalmology Study Group. Can J Ophthalmol. 1996;31:11–7.

    CAS  PubMed  Google Scholar 

  56. Jalkh AE, Weiter JJ, Trempe CL, Pruett RC, Schepens CL. Choroidal neovascularization in degenerative myopia: role of laser photocoagulation. Ophthalmic Surg. 1987;18:721–5.

    CAS  PubMed  Google Scholar 

  57. Pece A, Brancato R, Avanza P, Camesasca F, Galli L. Laser photocoagulation of choroidal neovascularization in pathologic myopia: long-term results. Int Ophthalmol. 1994;18:339–44.

    PubMed  Google Scholar 

  58. Fardeau C, Soubrane G, Coscas G. Photocoagulation des néo-vaisseaux sous-rétiniens compliquant la dégénérescence myopique. Bull Soc Ophtalmol Fr. 1992;92:239–42.

    Google Scholar 

  59. Ruiz-Moreno JM, Montero JA. Long-term visual acuity after argon green laser photocoagulation of juxtafoveal choroidal neovascularization in highly myopic eyes. Eur J Ophthalmol. 2002;12:117–22.

    CAS  PubMed  Google Scholar 

  60. Brancato R, Pece A, Avanza P, Radrizzani E. Photocoagulation scar expansion after laser therapy for choroidal neovascularization in degenerative myopia. Retina. 1990;10:239–43.

    CAS  PubMed  Google Scholar 

  61. De Juan Jr E, Machemer R. Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration. Am J Ophthalmol. 1988;105:25–9.

    PubMed  Google Scholar 

  62. Berger AS, Kaplan HJ. Clinical experience with the surgical removal of subfoveal neovascular membranes. Short-term postoperative results. Ophthalmology. 1992;99:969–75.

    CAS  PubMed  Google Scholar 

  63. Thomas MA, Grand MG, Williams DF, Lee CM, Pesin SR, Lowe MA. Surgical management of subfoveal choroidal neovascularization. Ophthalmology. 1992;99:952–68.

    CAS  PubMed  Google Scholar 

  64. Bressler NM, Bressler SB, Hawkins BS, et al. Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: I. Ophthalmic outcomes submacular surgery trials pilot study report number 1. Am J Ophthalmol. 2000;130:387–407.

    CAS  PubMed  Google Scholar 

  65. Hawkins BS, Bressler NM, Miskala PH, et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report no. 11. Ophthalmology. 2004;111:1967–80.

    PubMed  Google Scholar 

  66. Bressler NM, Bressler SB, Childs AL, et al. Surgery for hemorrhagic choroidal neovascular lesions of age-related macular degeneration: ophthalmic findings: SST report no. 13. Ophthalmology. 2004;111:1993–2006.

    PubMed  Google Scholar 

  67. Hawkins BS, Bressler NM, Bressler SB, et al. Surgical removal vs observation for subfoveal choroidal neovascularization, either associated with the ocular histoplasmosis syndrome or idiopathic: I. Ophthalmic findings from a randomized clinical trial: Submacular Surgery Trials (SST) Group H Trial: SST Report No. 9. Arch Ophthalmol. 2004;122:1597–611.

    PubMed  Google Scholar 

  68. Bass EB, Gilson MM, Mangione CM, et al. Surgical removal vs observation for idiopathic or ocular histoplasmosis syndrome-associated subfoveal choroidal neovascularization: Vision Preference Value Scale findings from the randomized SST Group H Trial: SST Report No. 17. Arch Ophthalmol. 2008;126:1626–32.

    PubMed  Google Scholar 

  69. Fujii GY, de Juan E, Thomas MA, Pieramici DJ, Humayun MS, Au Eong KG. Limited macular translocation for the management of subfoveal retinal pigment epithelial loss after submacular surgery. Am J Ophthalmol. 2001;131:272–5.

    CAS  PubMed  Google Scholar 

  70. Ohji M, Fujikado T, Kusaka S, et al. Comparison of three techniques of foveal translocation in patients with subfoveal choroidal neovascularization resulting from age-related macular degeneration. Am J Ophthalmol. 2001;132:888–96.

    CAS  PubMed  Google Scholar 

  71. Mruthyunjaya P, Stinnett SS, Toth CA. Change in visual function after macular translocation with 360 degrees retinectomy for neovascular age-related macular degeneration. Ophthalmology. 2004;111:1715–24.

    PubMed  Google Scholar 

  72. Cahill MT, Stinnett SS, Banks AD, Freedman SF, Toth CA. Quality of life after macular translocation with 360 degrees peripheral retinectomy for age-related macular degeneration. Ophthalmology. 2005;112:144–51.

    PubMed  Google Scholar 

  73. Lüke M, Ziemssen F, Völker M, et al. Full macular translocation (FMT) versus photodynamic therapy (PDT) with verteporfin in the treatment of neovascular age-related macular degeneration: 2-year results of a prospective, controlled, randomised pilot trial (FMT-PDT). Graefes Arch Clin Exp Ophthalmol. 2009;247:745–54.

    PubMed  Google Scholar 

  74. Lüke M, Ziemssen F, Bartz-Schmidt KU, Gelisken F. Quality of life in a prospective, randomised pilot-trial of photodynamic therapy versus full macular translocation in treatment of neovascular age-related macular degeneration–a report of 1 year results. Graefes Arch Clin Exp Ophthalmol. 2007;245:1831–6.

    PubMed  Google Scholar 

  75. Yamada Y, Miyamura N, Suzuma K, Kitaoka T. Long-term follow-up of full macular translocation for choroidal neovascularization. Am J Ophthalmol. 2010;149:453–7.e1.

    PubMed  Google Scholar 

  76. Uemura A, Thomas MA. Subretinal surgery for choroidal neovascularization in patients with high myopia. Arch Ophthalmol. 2000;118(3):344–50.

    CAS  PubMed  Google Scholar 

  77. Ruiz-Moreno JM, de la Vega C. Surgical removal of subfoveal choroidal neovascularisation in highly myopic patients. Br J Ophthalmol. 2001;85:1041–3.

    CAS  PubMed  Google Scholar 

  78. Hera R, Mouillon M, Gonzalvez B, Millet JY, Romanet JP. Surgery for choroidal subfoveal neovascularization in patients with severe myopia. Retrospective analysis of 17 patients. J Fr Ophtalmol. 2001;24:716–23.

    CAS  PubMed  Google Scholar 

  79. Hamelin N, Glacet-Bernard A, Brindeau C, Mimoun G, Coscas G, Soubrane G. Surgical treatment of subfoveal neovascularization in myopia: macular translocation vs surgical removal. Am J Ophthalmol. 2002;133:530–6.

    PubMed  Google Scholar 

  80. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials–TAP report. Arch Ophthalmol. 1999;117:1329–45.

    Google Scholar 

  81. Bressler NM, Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol. 2001;119:198–207.

    CAS  PubMed  Google Scholar 

  82. Blinder KJ, Bradley S, Bressler NM, et al. Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report no. 1. Am J Ophthalmol. 2003;136:407–18.

    CAS  PubMed  Google Scholar 

  83. Bressler NM, VAM Study Writing Committee. Verteporfin therapy in age-related macular degeneration (VAM): an open-label multicenter photodynamic therapy study of 4,435 patients. Retina. 2004;24:512–20.

    Google Scholar 

  84. Blinder KJ, Blumenkranz MS, Bressler NM, et al., Verteporfin in Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularisation in pathologic myopia: 2-year results of a randomized clinical trial – VIP report No 3. Ophthalmology 2003;110:667–72.

    Google Scholar 

  85. Bandello F, Blinder K, Bressler NM, et al. Verteporfin in photodynamic therapy: report no. 5. Ophthalmology. 2004;111:2144.

    PubMed  Google Scholar 

  86. Lam DS, Chan WM, Liu DT, Fan DS, Lai WW, Chong KK. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularisation of pathologic myopia in Chinese eyes: a prospective series of 1 and 2 year follow up. Br J Ophthalmol. 2004;88:1315–9.

    CAS  PubMed  Google Scholar 

  87. Gelisken F, Inhoffen W, Hermann A, Grisanti S, Bartz-Schmidt KU. Verteporfin photodynamic therapy for extrafoveal choroidal neovascularisation in pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 2004;242:926–30.

    CAS  PubMed  Google Scholar 

  88. Axer-Siegel R, Ehrlich R, Weinberger D, et al. Photodynamic therapy of subfoveal choroidal neovascularization in high myopia in a clinical setting: visual outcome in relation to age at treatment. Am J Ophthalmol. 2004;138:602–7.

    PubMed  Google Scholar 

  89. Ergun E, Heinzl H, Stur M. Prognostic factors influencing visual outcome of photodynamic therapy for subfoveal choroidal neovascularization in pathologic myopia. Am J Ophthalmol. 2004;138:434–8.

    PubMed  Google Scholar 

  90. Gibson J. Photodynamic therapy with verteporfin for juxtafoveal choroidal neovascularisation secondary to pathological myopia. Eye (Lond). 2005;19:829–30.

    CAS  Google Scholar 

  91. Lam DS, Liu DT, Fan DS, Lai WW, So SF, Chan WM. Photodynamic therapy with verteporfin for juxtafoveal choroidal neovascularization secondary to pathologic myopia-1-year results of a prospective series. Eye (Lond). 2005;19:834–40.

    CAS  Google Scholar 

  92. Schnurrbusch UE, Jochmann C, Wiedemann P, Wolf S. Quantitative assessment of the long-term effect of photodynamic therapy in patients with pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 2005;243:829–33.

    PubMed  Google Scholar 

  93. Krebs I, Binder S, Stolba U, Glittenberg C, Brannath W, Goll A. Choroidal neovascularization in pathologic myopia: three-year results after photodynamic therapy. Am J Ophthalmol. 2005;140:416–25.

    PubMed  Google Scholar 

  94. Pece A, Isola V, Vadala M, Matranga D. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization secondary to pathologic myopia: long-term study. Retina. 2006;26:746–51.

    PubMed  Google Scholar 

  95. Ohno-Matsui K, Moriyama M, Hayashi K, Mochizuki M. Choroidal vein and artery occlusion following photodynamic therapy in eyes with pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 2006;244:1363–6.

    PubMed  Google Scholar 

  96. Chen YS, Lin JY, Tseng SY, Yow SG, Hsu WJ, Tsai SC. Photodynamic therapy for Taiwanese patients with pathologic myopia: a 2-year follow-up. Retina. 2007;27:839–45.

    PubMed  Google Scholar 

  97. Virgili G, Varano M, Giacomelli G, et al. Photodynamic therapy for nonsubfoveal choroidal neovascularization in 100 eyes with pathologic myopia. Am J Ophthalmol. 2007;143:77–82.

    PubMed  Google Scholar 

  98. Pece A, Vadala M, Isola V, Matranga D. Photodynamic therapy with verteporfin for juxtafoveal choroidal neovascularization in pathologic myopia: a long-term follow-up study. Am J Ophthalmol. 2007;143:449–54.

    CAS  PubMed  Google Scholar 

  99. Ruiz-Moreno JM, Montero JA, Gomez-Ulla F. Photodynamic therapy may worsen the prognosis of highly myopic choroidal neovascularisation treated by intravitreal bevacizumab. Br J Ophthalmol. 2009;93:1693–4.

    CAS  PubMed  Google Scholar 

  100. Ruiz-Moreno JM, Amat P, Montero JA, Lugo F. Photodynamic therapy to treat choroidal neovascularisation in highly myopic patients: 4 years’ outcome. Br J Ophthalmol. 2008;92:792–4.

    CAS  PubMed  Google Scholar 

  101. Hayashi K, Ohno-Matsui K, Shimada N, et al. Long-term results of photodynamic therapy for choroidal neovascularization in Japanese patients with pathologic myopia. Am J Ophthalmol. 2011;151:137–47.e1.

    PubMed  Google Scholar 

  102. Coutinho AM, Silva RM, Nunes SG, Cachulo ML, Figueira JP, Murta JN. Photodynamic therapy in highly myopic eyes with choroidal neovascularization: 5 years of follow-up. Retina. 2011;31:1089–94.

    CAS  PubMed  Google Scholar 

  103. Giansanti F, Virgili G, Donati MC, et al. Long-term results of photodynamic therapy for subfoveal choroidal neovascularization with pathologic myopia. Retina. 2012;32:1547–52.

    CAS  PubMed  Google Scholar 

  104. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    CAS  PubMed  Google Scholar 

  105. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    CAS  PubMed  Google Scholar 

  106. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333:328–35.

    CAS  PubMed  Google Scholar 

  107. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    CAS  PubMed  Google Scholar 

  108. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1432–44.

    CAS  PubMed  Google Scholar 

  109. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.

    CAS  PubMed  Google Scholar 

  110. Singer MA, Awh CC, Sadda S, et al. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology. 2012;119:1175–83.

    PubMed  Google Scholar 

  111. Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005;36:331–5.

    PubMed  Google Scholar 

  112. Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology. 2006;113:363–72.e5.

    PubMed  Google Scholar 

  113. Spaide RF, Laud K, Fine HF, et al. Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina. 2006;26:383–90.

    PubMed  Google Scholar 

  114. El-Mollayess GM, Noureddine BN, Bashshur ZF. Bevacizumab and neovascular age related macular degeneration: pathogenesis and treatment. Semin Ophthalmol. 2011;26:69–76.

    PubMed  Google Scholar 

  115. http://online.wsj.com/article/SB119213222981256309.html?mod=home_health_right.

  116. http://aging.senate.gov/letters/genentechcmsltr.pdf.

  117. CATT Research Group, Martin DF, Maguire MG, Ying GS, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364:1897–908.

    CAS  PubMed  Google Scholar 

  118. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin DF, Maguire MG, Fine SL, Ying GS, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119:1388–98.

    PubMed Central  PubMed  Google Scholar 

  119. Laud K, Spaide RF, Freund KB, Slakter J, Klancnik Jr JM. Treatment of choroidal neovascularization in pathologic myopia with intravitreal bevacizumab. Retina. 2006;26:960–3.

    PubMed  Google Scholar 

  120. Yamamoto I, Rogers AH, Reichel E, Yates PA, Duker JS. Intravitreal bevacizumab (Avastin) as treatment for subfoveal choroidal neovascularisation secondary to pathological myopia. Br J Ophthalmol. 2007;91:157–60.

    PubMed  Google Scholar 

  121. Sakaguchi H, Ikuno Y, Gomi F, et al. Intravitreal injection of bevacizumab for choroidal neovascularisation associated with pathological myopia. Br J Ophthalmol. 2007;91:161–5.

    CAS  PubMed  Google Scholar 

  122. Hernández-Rojas ML, Quiroz-Mercado H, Dalma-Weiszhausz J, et al. Short-term effects of intravitreal bevacizumab for subfoveal choroidal neovascularization in pathologic myopia. Retina. 2007;27:707–12.

    PubMed  Google Scholar 

  123. Chan WM, Lai TY, Liu DT, Lam DS. Intravitreal bevacizumab (Avastin) for myopic choroidal neovascularization: six-month results of a prospective pilot study. Ophthalmology. 2007;114:2190–6.

    PubMed  Google Scholar 

  124. Rensch F, Spandau UH, Schlichtenbrede F, et al. Intravitreal bevacizumab for myopic choroidal neovascularization. Ophthalmic Surg Lasers Imaging. 2008;39:182–5.

    PubMed  Google Scholar 

  125. Silva RM, Ruiz-Moreno JM, Nascimento J, et al. Short-term efficacy and safety of intravitreal ranibizumab for myopic choroidal neovascularization. Retina. 2008;28:1117–23.

    PubMed  Google Scholar 

  126. Arias L, Planas N, Prades S, et al. Intravitreal bevacizumab (Avastin) for choroidal neovascularisation secondary to pathological myopia: 6-month results. Br J Ophthalmol. 2008;92:1035–9.

    CAS  PubMed  Google Scholar 

  127. Chang LK, Spaide RF, Brue C, Freund KB, Klancnik Jr JM, Slakter JS. Bevacizumab treatment for subfoveal choroidal neovascularization from causes other than age-related macular degeneration. Arch Ophthalmol. 2008;126:941–5.

    CAS  PubMed  Google Scholar 

  128. Rheaume MA, Sebag M. Intravitreal bevacizumab for the treatment of choroidal neovascularization associated with pathological myopia. Can J Ophthalmol. 2008;43:576–80.

    PubMed  Google Scholar 

  129. Wong D, Li KK. Avastin in myopic choroidal neovascularisation: is age the limit? Br J Ophthalmol. 2008;92:1011–2.

    PubMed  Google Scholar 

  130. Ruiz-Moreno JM, Montero JA, Gomez-Ulla F, Ares S. Intravitreal bevacizumab to treat subfoveal choroidal neovascularisation in highly myopic eyes: 1-year outcome. Br J Ophthalmol. 2009;93:448–51.

    CAS  PubMed  Google Scholar 

  131. Hayashi K, Ohno-Matsui K, Teramukai S, et al. Comparison of visual outcome and regression pattern of myopic choroidal neovascularization after intravitreal bevacizumab or after photodynamic therapy. Am J Ophthalmol. 2009;148:396–408.

    CAS  PubMed  Google Scholar 

  132. Yodoi Y, Tsujikawa A, Nakanishi H, et al. Central retinal sensitivity after intravitreal injection of bevacizumab for myopic choroidal neovascularization. Am J Ophthalmol. 2009;147:816–24, 24.e1.

    CAS  PubMed  Google Scholar 

  133. Ikuno Y, Soga K, Wakabayashi T, Gomi F. Angiographic changes after bevacizumab. Ophthalmology. 2009;116:2263.e1.

    PubMed  Google Scholar 

  134. Hayashi K, Ohno-Matsui K, Shimada N, et al. Intravitreal bevacizumab on myopic choroidal neovascularization that was refractory to or had recurred after photodynamic therapy. Graefes Arch Clin Exp Ophthalmol. 2009;247:609–18.

    CAS  PubMed  Google Scholar 

  135. Konstantinidis L, Mantel I, Pournaras JA, Zografos L, Ambresin A. Intravitreal ranibizumab (Lucentis) for the treatment of myopic choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009;247:311–8.

    CAS  PubMed  Google Scholar 

  136. Dithmar S, Schaal KB, Hoh AE, Schmidt S, Schutt F. Intravitreal bevacizumab for choroidal neovascularization due to pathological myopia. Ophthalmologe. 2009;106:527–30.

    CAS  PubMed  Google Scholar 

  137. Chan WM, Lai TY, Liu DT, Lam DS. Intravitreal bevacizumab (Avastin) for myopic choroidal neovascularisation: 1-year results of a prospective pilot study. Br J Ophthalmol. 2009;93:150–4.

    PubMed  Google Scholar 

  138. Ruiz-Moreno JM, Gomez-Ulla F, Montero JA, et al. Intravitreous bevacizumab to treat subfoveal choroidal neovascularization in highly myopic eyes: short-term results. Eye (Lond). 2009;23:334–8.

    CAS  Google Scholar 

  139. Ikuno Y, Sayanagi K, Soga K, et al. Intravitreal bevacizumab for choroidal neovascularization attributable to pathological myopia: one-year results. Am J Ophthalmol. 2009;147:94–100.e1.

    CAS  PubMed  Google Scholar 

  140. Sayanagi K, Ikuno Y, Soga K, Wakabayashi T, Tano Y. Marginal crack after intravitreal bevacizumab for myopic choroidal neovascularization. Acta Ophthalmol. 2009;87:460–3.

    PubMed  Google Scholar 

  141. Cohen SY. Anti-VEGF drugs as the 2009 first-line therapy for choroidal neovascularization in pathologic myopia. Retina. 2009;29:1062–6.

    PubMed  Google Scholar 

  142. Monés JM, Amselem L, Serrano A, Garcia M, Hijano M. Intravitreal ranibizumab for choroidal neovascularization secondary to pathologic myopia: 12-month results. Eye (Lond). 2009;23:1275–80.

    Google Scholar 

  143. Gharbiya M, Allievi F, Mazzeo L, Gabrieli CB. Intravitreal bevacizumab treatment for choroidal neovascularization in pathologic myopia: 12-month results. Am J Ophthalmol. 2009;147:84–93.e1.

    CAS  PubMed  Google Scholar 

  144. Wu PC, Chen YJ. Intravitreal injection of bevacizumab for myopic choroidal neovascularization: 1-year follow-up. Eye (Lond). 2009;23:2042–5.

    CAS  Google Scholar 

  145. Lai TY, Chan WM, Liu DT, Lam DS. Intravitreal ranibizumab for the primary treatment of choroidal neovascularization secondary to pathologic myopia. Retina. 2009;29:750–6.

    PubMed  Google Scholar 

  146. Ruiz-Moreno JM, Montero JA. Intravitreal bevacizumab to treat myopic choroidal neovascularization: 2-year outcome. Graefes Arch Clin Exp Ophthalmol. 2010;248:937–41.

    CAS  PubMed  Google Scholar 

  147. Voykov B, Gelisken F, Inhoffen W, Voelker M, Bartz-Schmidt KU, Ziemssen F. Bevacizumab for choroidal neovascularization secondary to pathologic myopia: is there a decline of the treatment efficacy after 2 years? Graefes Arch Clin Exp Ophthalmol. 2010;248:543–50.

    CAS  PubMed  Google Scholar 

  148. Lalloum F, Souied EH, Bastuji-Garin S, et al. Intravitreal ranibizumab for choroidal neovascularization complicating pathologic myopia. Retina. 2010;30:399–406.

    PubMed  Google Scholar 

  149. Silva RM, Ruiz-Moreno JM, Rosa P, et al. Intravitreal ranibizumab for myopic choroidal neovascularization: 12-month results. Retina. 2010;30:407–12.

    PubMed  Google Scholar 

  150. Vadala M, Pece A, Cipolla S, et al. Is ranibizumab effective in stopping the loss of vision for choroidal neovascularisation in pathologic myopia? A long-term follow-up study. Br J Ophthalmol. 2010;95:657–61.

    PubMed  Google Scholar 

  151. Scupola A, Tiberti AC, Sasso P, et al. Macular functional changes evaluated with MP-1 microperimetry after intravitreal bevacizumab for subfoveal myopic choroidal neovascularization: one-year results. Retina. 2010;30:739–47.

    PubMed  Google Scholar 

  152. Gharbiya M, Allievi F, Conflitti S, et al. Intravitreal bevacizumab for treatment of myopic choroidal neovascularization: the second year of a prospective study. Clin Ter. 2010;161:e87–93.

    CAS  PubMed  Google Scholar 

  153. Wakabayashi T, Ikuno Y, Gomi F. Different dosing of intravitreal bevacizumab for choroidal neovascularization because of pathologic myopia. Retina. 2011;31:880–6.

    CAS  PubMed  Google Scholar 

  154. Calvo-Gonzalez C, Reche-Frutos J, Donate J, Fernandez-Perez C, Garcia-Feijoo J. Intravitreal ranibizumab for myopic choroidal neovascularization: factors predictive of visual outcome and need for retreatment. Am J Ophthalmol. 2011;151:529–34.

    CAS  PubMed  Google Scholar 

  155. Nakanishi H, Tsujikawa A, Yodoi Y, et al. Prognostic factors for visual outcomes 2-years after intravitreal bevacizumab for myopic choroidal neovascularization. Eye (Lond). 2011;25:375–81.

    CAS  Google Scholar 

  156. Franqueira N, Cachulo ML, Pires I, et al. Long-term follow-up of myopic choroidal neovascularization treated with ranibizumab. Ophthalmologica. 2012;227:39–44.

    CAS  PubMed  Google Scholar 

  157. Peiretti E, Vinci M, Fossarello M. Intravitreal bevacizumab as a treatment for choroidal neovascularisation secondary to myopia: 4-year study results. Can J Ophthalmol. 2012;47:28–33.

    PubMed  Google Scholar 

  158. Gharbiya M, Cruciani F, Parisi F, Cuozzo G, Altimari S, Abdolrahimzadeh S. Long-term results of intravitreal bevacizumab for choroidal neovascularisation in pathological myopia. Br J Ophthalmol. 2012;96:1068–72.

    PubMed  Google Scholar 

  159. Gharbiya M, Giustolisi R, Allievi F, et al. Choroidal neovascularization in pathologic myopia: intravitreal ranibizumab versus bevacizumab – a randomized controlled trial. Am J Ophthalmol. 2010;149:458–64.

    CAS  PubMed  Google Scholar 

  160. Ruiz-Moreno JM, Montero JA, Arias L, et al. Twelve-month outcome after one intravitreal injection of bevacizumab to treat myopic choroidal neovascularization. Retina. 2010;30:1609–15.

    PubMed  Google Scholar 

  161. Nor-Masniwati S, Shatriah I, Zunaina E. Single intravitreal ranibizumab for myopic choroidal neovascularization. Clin Ophthalmol. 2011;5:1079–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Parodi MB, Iacono P, Papayannis A, Sheth S, Bandello F. Laser photocoagulation, photodynamic therapy, and intravitreal bevacizumab for the treatment of juxtafoveal choroidal neovascularization secondary to pathologic myopia. Arch Ophthalmol. 2010;128:437–42.

    CAS  PubMed  Google Scholar 

  163. Yoon JU, Byun YJ, Koh HJ. Intravitreal anti-VEGF versus photodynamic therapy with verteporfin for treatment of myopic choroidal neovascularization. Retina. 2010;30:418–24.

    PubMed  Google Scholar 

  164. Niwa Y, Sawada O, Miyake T, et al. Comparison between one injection and three monthly injections of intravitreal bevacizumab for myopic choroidal neovascularization. Ophthalmic Res. 2012;47:135–40.

    CAS  PubMed  Google Scholar 

  165. Ruiz-Moreno JM, Montero JA, Amat-Peral P. Myopic choroidal neovascularization treated by intravitreal bevacizumab: comparison of two different initial doses. Graefes Arch Clin Exp Ophthalmol. 2011;249:595–9.

    CAS  PubMed  Google Scholar 

  166. Kaiser PK, Boyer DS, Cruess AF, et al. Verteporfin plus ranibizumab for choroidal neovascularization in age-related macular degeneration: twelve-month results of the DENALI study. Ophthalmology. 2012;119:1001–10.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Spaide MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spaide, R.F. (2014). Choroidal Neovascularization. In: Spaide, R., Ohno-Matsui, K., Yannuzzi, L. (eds) Pathologic Myopia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8338-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8338-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8337-3

  • Online ISBN: 978-1-4614-8338-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics