Skip to main content

Introduction to Phantoms of Medical and Health Physics

  • Chapter
  • First Online:
The Phantoms of Medical and Health Physics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Phantoms, devices that represent the human body, have been used in medical physics and health physics since the beginning. Soon after the discovery of X-rays, news of the medical benefits of radiation quickly spread. The first X-ray image of a human was taken of Prof. Wilhelm Roentgen’s wife’s hand in 1896.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trevert, E. (1896). Something about X Rays for everybody. Lynn: Bubier Publishing.

    Google Scholar 

  2. Kienbock, R. (1906). On the quantimetric method. Arch Roentgen Ray, 11, 17.

    Google Scholar 

  3. Stacey, A. J., Bevan, A. R. & Dickens, C. W. (1961). A new phantom material employing depolymerised natural rubber. British Journal of Radiologoy, 34, 510–515.

    Google Scholar 

  4. Alderson, S. W., Lanzl, L. H., Rollins, M., & Spira, J. (1962). An instrumented phantom system for analog computation of treatment plans. The American Journal of Roentgenology, Radium Therapy, and Nuclear Medicine, 87, 185.

    Google Scholar 

  5. Xu, X.G., Chao, T.C., & Bozkurt, A. (2000). VIP-man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations. Health Physics, 78(5), 476–486.

    Google Scholar 

  6. Hill, R., Holloway, L., & Baldock, C. (2005). A dosimetric evaluation of water equivalent phantoms for kilovoltage x-ray beams. Physics in Medicine and Biology, 50(21), N331–N334.

    Article  Google Scholar 

  7. Pantelis, E., Karlis, A. K., Kozicki, M., Papagiannis, P., Sakelliou, L., & Rosiak, J. M. (2004). Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy. Physics in Medicine and Biology, 49(15), 3495–3514.

    Article  ADS  Google Scholar 

  8. Pernicka, F. (1990). CT dosimetry using a TL technique. Radiation Protection Dosimetry, 34(1–4), 271–274.

    Google Scholar 

  9. Somigliana, A., Cattaneo, G. M., Fiorino, C., Borelli, S., del Vecchio, A., Zonca, G., et al. (1999). Dosimetry of gamma knife and linac-based radiosurgery using radiochromic and diode detectors. Physics in Medicine and Biology, 44(4), 887–897.

    Article  ADS  Google Scholar 

  10. Han, Y., Shin, E. H., Lim, C., Kang, S. K., Park, S. H., Lah, J. E., et al. (2008). Dosimetry in an IMRT phantom designed for a remote monitoring program. Medical Physics, 35(6), 2519–2525.

    Article  ADS  Google Scholar 

  11. Low, D. A., Moran, J. M., Dempsey, J. F., Dong, L., & Oldham, M. (2011). Dosimetry tools and techniques for IMRT. Medical Physics, 38(3), 1313–1338.

    Article  Google Scholar 

  12. McEwen, M. R. (2010). Measurement of ionization chamber absorbed dose k factors in megavoltage photon beams. Medical Physics, 37(5), 2179–2193.

    Article  Google Scholar 

  13. Attix, F. H. (1968). Introduction to radiological physics and radiation dosimetry. Weinheim: Wiley.

    Google Scholar 

  14. Nunn, A. A., Davis, S. D., Micka, J. A., & DeWerd, L. A. (2008). LiF: Mg, Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20–250 kVp relative to Co. Medical Physics, 35(5), 1859–1869.

    Article  ADS  Google Scholar 

  15. Carrillo, R. E., Pearson, D. W., Deluca, P. M., Jr, Mackay, J. F., & Lagally, M. G. (1996). Response of calcium fluoride to 275–2,550 eV photons. Radiation Measurements, 26(1), 75–82.

    Article  Google Scholar 

  16. DeWerd, L., Bartol, L., & Davis, S. (2009). Thermoluminescence dosimetry. In D. W. O. Rogers & J. E. Cygler (Eds.), Clinical dosimetry measurements in radiotherapy (pp. 815–840). Madison: Medical Physics Publishing.

    Google Scholar 

  17. Pai, S., Das, I. J., Dempsey, J. F., Lam, K. L., LoSasso, T. J., Olch, A. J., et al. (2007). TG-69: Radiographic film for megavoltage beam dosimetry. Medical Physics, 34(6), 2228–2258.

    Article  ADS  Google Scholar 

  18. Niroomand-Rad, A., Blackwell, C. R., Coursey, B. M., Gall, K. P., Galvin, J. M., McLaughlin, W. L., et al. (1998). Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55. Medical Physics, 25(11), 2093–2115.

    Article  ADS  Google Scholar 

  19. ICRP. 2009. Adult reference computational phantoms. ICRP Publication 110. Annual of ICRP, 39(2).

    Google Scholar 

  20. Dimbylow, P. J. (1999). FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Physics in Medicine and Biology, 42(3), 479–490.

    Article  ADS  Google Scholar 

  21. Capello, K., Kedzior, S., & Kramer, G. H. (2012). Voxel phantoms: The new ICRP computational phantoms: How do they compare? Health Physics, 102(6), 626–630.

    Google Scholar 

  22. Schauer, D. A., & Linton, O. W. (2009). NCRP Report No. 160, ionizing radiation exposure of the population of the United States, medical exposure-are we doing less with more, and is there a role for health physicists? Health Physics, 97(1), 1–5.

    Article  Google Scholar 

  23. Ghetti, C., Ortenzia, O., & Serreli, G. (2012). CT iterative reconstruction in image space: A phantom study. Physica Medica, 28(2), 161–165.

    Article  Google Scholar 

  24. Yamaguchi, M., Fujita, H., Bessho, Y., Inoue, T., Asai, Y., & Murase, K. (2011). Investigation of optimal display size for detecting ground-glass opacity on high resolution computed tomography using a new digital contrast-detail phantom. European Journal of Radiology, 80(3), 845–850.

    Article  Google Scholar 

  25. Ihalainen, T. M., Lönnroth, N. T., Peltonen, J. I., Uusi-Simola, J. K., Timonen, M. H., Kuusela, L. J., et al. (2011). MRI quality assurance using the ACR phantom in a multi-unit imaging center. Acta Oncologica, 50(6), 966–972.

    Article  Google Scholar 

  26. DiFilippo, F. P., Price, J. P., Kelsch, D. N., & Muzic, R. F., Jr. (2004). Porous phantoms for PET and SPECT performance evaluation and quality assurance. Medical Physics, 31(5), 1183–1194.

    Article  ADS  Google Scholar 

  27. Madsen, E. L., Zagzebski, J. A., Macdonald, M. C., & Frank, G. R. (1991). Ultrasound focal lesion detectability phantoms. Medical Physics, 18(6), 1171–1180.

    Article  ADS  Google Scholar 

  28. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62(1), 10–29.

    Google Scholar 

  29. Sokole, E. B., Graham, L. S., Todd-Pokropek, A., Wegst, A., Robilotta, C. C., & Krisanachinda, A. (2003). IAEA quality control atlas for scintillation camera systems. Vienna: International Atomic Energy Agency.

    Google Scholar 

  30. Lima Ferreira, F. C., & Souza, D. D. N. (2011). Liver phantom for quality control and training in nuclear medicine. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 652(1), 791–793.

    Article  ADS  Google Scholar 

  31. Li, H. J., & Votaw, J. R. (1998). Optimization of PET activation studies based on the SNR measured in the 3-D Hoffman brain phantom. IEEE Transactions on Medical Imaging, 17(4), 596–605.

    Article  Google Scholar 

  32. Kramer, G. H., Burns, L., & Noel, L. (1991). The BRMD BOMAB phantom family. Health Physics, 61(6), 895.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. DeWerd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

DeWerd, L.A., Lawless, M. (2014). Introduction to Phantoms of Medical and Health Physics. In: DeWerd, L., Kissick, M. (eds) The Phantoms of Medical and Health Physics. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8304-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8304-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8303-8

  • Online ISBN: 978-1-4614-8304-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics