Skip to main content

Quantitative Imaging Using Autoradiographic Techniques

  • Chapter
  • First Online:
Pharmaco-Imaging in Drug and Biologics Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 8))

  • 1301 Accesses

Abstract

Autoradiography (ARG) is a powerful, high resolution, quantitative molecular imaging technique used to study the tissue distribution of radiolabeled xenobiotics in biological models. ARG involves the close apposition of solid specimens containing radiolabeled substance to a detector layer, such as photographic emulsions, film, phosphor imaging plates, and direct nuclear imagers/counters and the two basic types include: Macro-autoradiography, which is imaging of organs, organ systems, and/or whole-body sections (WBA); and micro-autoradiography (MARG), which provides localization of radioactivity at the cellular level. The basic technique is more than 60 years, but it remained largely qualitative due to the limited linear range of quantification offered by nuclear emulsion detection systems. However, recent technologies have revolutionized the techniques of WBA and made quantification of radioactivity in tissues possible. WBA and MARG techniques provide drug researchers with quantitative tissue concentration data and a high resolution visual location of those drug or biologic concentrations in intact organs, tissues, and cells of laboratory animals. In addition, novel techniques such as matrix-assisted laser desorption imaging mass spectrometry (MALDI-MSI), and Secondary Ion Mass Spectrometric (SIMS) imaging can positively identify the molecular identity and image the spatial distribution of the parent drug and/or their metabolites in the same samples used for whole-body and micro-autoradiography. This chapter presents an overview of the techniques and reviews the use of QWBA, MARG, MALDI-MS, SIMS, and tissue extraction and liquid chromatography/mass spectroscopy (LC/MS) in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altelaar AFM, Klinkert I, Jalink K, de Lange RPJ, Adan RAH, Heeren RMA, Piersma SR (2006) Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem 78:734–742

    Article  PubMed  CAS  Google Scholar 

  • Appleton TC (1964) Autoradiography of soluble labeled compounds. J Royal Micro Soc 83:277–281

    Article  CAS  Google Scholar 

  • Baker JRJ (1989) Autoradiography: a comprehensive review. Royal microscopical society, microscopy handbooks 18. Oxford Science, Oxford, pp 30–32

    Google Scholar 

  • Bélanger LF, Leblond CP (1946) A method for locating radioactive elements in tissues by covering histological sections with a photographic emulsion. Endocrinology 39:8

    Article  PubMed  Google Scholar 

  • Blackett NM, Parry DM (1973) A new method for analyzing electron microscope autoradiographs using hypothetical grain distributions. JCell Biol 57:9–15

    Article  CAS  Google Scholar 

  • Breskin A (2000) Advances in gas avalanche radiation detectors for biomedical applications. Nucl Instr Meth A454:26–39

    Google Scholar 

  • Braddock M (2012) Biomedical Imaging. In: The Chemistry of Labels Probes and Contrast Agents. Chapter 6. RSC Publishing, Cambridge, UK, pp 309–342

    Google Scholar 

  • Burns MS (1982) Applications of secondary ion mass-spectrometry (Sims) in biological-research: a review. J Microsc 127:237–258

    Article  PubMed  CAS  Google Scholar 

  • Caro LG (1961) Electron microscopic radiography of thin sections: golgi zone as a site of protein concentration in pancreatic acinar cells. J Biophys Biochem Cytol 10:37

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Smith DR, Morrison GH (2000) Subcellular imaging by dynamic SIMS ion microscopy. Anal Chem 202:217–229

    Google Scholar 

  • Coulston F, Carr CJ (eds) (2000) The validation of radioluminography for use in quantitative distribution studies. Regul Toxicol Pharmacol 31(2):S1–S62

    Google Scholar 

  • Debois D, Brunelle A, Laprevote O (2007) Attempts for molecular depth profiling directly on a rat brain tissue section using fullerene and bismuth cluster ion beams. Int J Mass Spectrom 260:115–120

    Article  CAS  Google Scholar 

  • Debois D, Bralet MP, Le Naour F, Brunelle A, Laprevote O (2009) In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal Chem 81:2823–2831

    Article  PubMed  CAS  Google Scholar 

  • Delcourte A, Bertrand P (2004) Interest of silver and gold metallization for molecular SIMS and SIMS imaging. Appl Surf Sci 231:250–255

    Article  Google Scholar 

  • Delecorte A, Bour J, Aubriet F, Muller JF, Bertrand P (2003) Sample metallization for performance improvement in desorption/ionization of kilodalton molecules: quantitative evaluation, imaging secondary ion MS, and laser ablation. Anal Chem 75:6875–6885

    Article  Google Scholar 

  • Dl J, Warren S (1955) Simplified liquid emulsion radioautography. J Biol Photogr Assoc 23(4):145–150

    Google Scholar 

  • Downs AM, Williams MA (1984) An improved approach to the analysis of autoradiographs containing isolated sources of simple shape: method, theoretical basis and reference data. J Microsc 114:143–156

    Article  Google Scholar 

  • Fletcher JS, Rabbani S, Henderson A, Blenkinsopp P, Thompson SP, Lockyer NP, Vickerman JC (2008) A new dynamic in mass spectral imaging of single biological cells. Anal Chem 80:9058–9064

    Article  PubMed  CAS  Google Scholar 

  • Hahn EJ (1983) Autoradiography: a review of basic principles. Am Laborat 15:64–71

    CAS  Google Scholar 

  • Hamm G, Porreaux L, Stauber JJ (2012) www.imabiotech.com/Toward-Quantitative-Imaging-Mass.html; Imabiotech Application Note #MSI-01

  • Heeren RMA, McDonnell LA, Amstalden E, Luxembourg SL, Altelaar AFM, Piersma SR (2006) Why don’t biologists use SIMS? A critical evaluation of imaging MS. Appl Surf Sci 252:6827–6835

    Article  CAS  Google Scholar 

  • Hesk D, McNamara P (2007) Synthesis of isotopically labelled compounds at Schering-Plough, an historical perspective. J Label Comp Rad 50:875–887

    Article  CAS  Google Scholar 

  • Jones EA, Lockyer NP, Vickerman JC (2007) Depth profiling brain tissue sections with a 40 keV C60+ primary ion beam. Int J Mass Spectrom 260:146–157

    Article  CAS  Google Scholar 

  • Joftes Dl, Warren S (1955) Simplified liquid emulsion radioautography. J Biol Photogr Assoc. 23(4):145–150

    Google Scholar 

  • Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Proc 78:53–68

    Article  CAS  Google Scholar 

  • Keune K, Boon JJ (2004) Enhancement of the static SIMS secondary ion yields of lipid moieties by ultrathin gold coating of aged oil paint surfaces. Surf Interface Anal 36:1620–1628

    Article  CAS  Google Scholar 

  • Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78(18):6448–6456

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Prelusky D, Wang L, Hesk D, Palamanda J, Nomeir A (2004) The importance of radiochemical analysis of biological fluids before and after lyophilization from animals dosed with [3H]-labeled compounds in drug discovery. Am Pharm Rev 7:44–48

    CAS  Google Scholar 

  • Kolbe H, Dietzel G (2000) Technical validation of radioluminography systems. Regul Toxicol Pharmacol 31(2):S5–S14

    Article  PubMed  CAS  Google Scholar 

  • Lacassagne A, Lattes J (1924) R’éparitiondu polonium (injecté sous la peau) dans l’organisme de rats porteurs de griffes cancereuses. C R Séance Soc Biol 90:352–353

    CAS  Google Scholar 

  • Li Q, Si Y, Smith KS, Zeng Q, Weina PJ (2008) Embryotoxicity of artesunate in animal species related to drug tissue distribution and toxicokinetic profiles. Birth Defects Res B Dev Reprod Toxicol 83:435–445

    Article  PubMed  CAS  Google Scholar 

  • Luckey G (1975) US Patent 3,859,527

    Google Scholar 

  • Magnusson Y, Friberg P, Sjövall P, Dangardt F, Malmberg P, Chen Y (2008) Clinical lipid imaging of human skeletal muscle using TOF-SIMS with bismuth cluster ion as a primary ion source. Clin Physiol Funct Imaging 28:202–209

    Article  PubMed  CAS  Google Scholar 

  • Maier O, Oberle V, Hoekstra D (2002) Fluorescent lipid probes: some properties and applications (a review). Chem Phys Lipids 116:3–18

    Article  PubMed  CAS  Google Scholar 

  • Malmberg P, Börner K, Yun C, Friberg P, Hagenhoff B, Mansson JE, Nygren H (2007) Localization of lipids in the aortic wall with imaging TOF-SIMS. Biochim Biophys Acta 1771:185–195

    Article  PubMed  CAS  Google Scholar 

  • McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4): 606–643

    Article  PubMed  CAS  Google Scholar 

  • McDonnell LA, Piersma SR, Altelaar AFM, Mize TH, Luxembourg SL, Verhaert PDEM, van Minnen J, Heeren RMA (2005) Subcellular imaging mass spectrometry of brain tissue. J Mass Spectrom 40:160–168

    Article  PubMed  CAS  Google Scholar 

  • McDonnell LA, Heeren RMA, de Lange RPJ, Fletcher IW (2006) Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging. J Am Soc Mass Spectrom 17:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • McQuaw CM, Zheng L, Ewing AG, Winograd N (2007) Localization of sphingomyelin in cholesterol domains by imaging mass spectrometry. Langmuir 23:5645–5650

    Article  PubMed  CAS  Google Scholar 

  • Michnowicz J (2011) Mass spectrometry in drug discovery and development. Nat Rev Drug Discov 1:651–651

    Article  Google Scholar 

  • Mitra S, Foster TH (2008) In vivo confocal fluorescence imaging of the intratumor distribution of the photosensitizer mono-l-aspartylchlorin-e61. Neoplasia 10(5):429–438

    PubMed  CAS  Google Scholar 

  • Miyaji Y, Walter S, Chen L, Kurihara A, Ishizuka T, Saito M, Kawai K, Okazaki O (2011) Distribution of KAI-9803, a novel δ-protein kinase C inhibitor, after intravenous administration to rats. Drug Metab Dispos 39(10):1946–1953

    Article  PubMed  CAS  Google Scholar 

  • Nagata T (1997) Techniques and application of microscopic autoradiography. Histol Histopathol 12:1091–1124

    PubMed  CAS  Google Scholar 

  • Nagy G, Gelb LD, Walker AV (2005) An investigation of enhanced secondary ion emission under Au(n) + (n = 1–7) bombardment. J Am Soc Mass Spectrom 16:733–742

    Article  PubMed  CAS  Google Scholar 

  • Nygren H, Börner K, Malmberg P, Tallarek E, Hagenhoff B (2005) Imaging TOF-SIMS of rat kidney prepared by high-pressure freezing. Microsc Res Tech 68:329–334

    Article  PubMed  Google Scholar 

  • Ostrowski SG, Kurczy ME, Roddy TP, Winograd N, Ewing AG (2007) SIMS imaging of cholesterol in membranes of fluorescently identified single cells. Anal Chem 79:3554–3560

    Article  PubMed  CAS  Google Scholar 

  • Parry S, Winograd N (2005) High-resolution TOF-SIMS imaging of eukaryotic cells preserved in a trehalose matrix. Anal Chem 77:7950–7957

    Article  PubMed  CAS  Google Scholar 

  • Potchioba MJ, Tensfeldt TG, Nocerini MR, Silber BM (1995) A novel quantitative method for determining the biodistribution of radiolabeled xenobiotics using whole-body cryosectioning. J Pharmacol Exp Ther 272(2):953–962

    Google Scholar 

  • Prideaux B, Dartois V, Staab D, Weiner DM, Goh A, Via LE, Barry CEIII, Stoeckli M (2011) High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem 83(6):2112–2118

    Article  PubMed  CAS  Google Scholar 

  • Rauvast V, Mavon A (2006) Transfollicular delivery of linoleic acid in human scalp skin : permeation study and microautoradiographic analysis. Int J Cosmet Sci 28(2):117–123

    Article  Google Scholar 

  • Roffey SJ, Obach RS, Gedge JI, Smith DA (2007) What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metab Rev 39:17–43

    Article  PubMed  CAS  Google Scholar 

  • Rohner TC, Staab D, Stoeckli M (2005) MALDI mass spectrometric imaging of biological tissue sections. Mech Aging Dev 126:177–185

    Article  PubMed  CAS  Google Scholar 

  • Salpeter MM, Bachmann L, Salpeter EE (1969) Resolution in electron microscope radioautography. J Cell Biol 41:1–40

    Article  PubMed  CAS  Google Scholar 

  • Schober Y, Guenther S, Spengler B, Römpp A (2012) High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue. Rapid Commun Mass Spectrom 26(9):1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer A, Fahr A, Niederberger W (1975) A simple method for quantitation of 14C-whole-body autoradiograms. Appl Radiat Isotopes 33:329–333

    Google Scholar 

  • Sinsheimer JE, Shum YY (1981) Biodehalogenation and metabolism of 125[I]-4-iodobiphenyl. J Pharm Sci 70(5):546–549

    Article  PubMed  CAS  Google Scholar 

  • Solon E (2007) Autoradiography: high-resolution molecular imaging in pharmaceutical discovery and development. Expert Opin Drug Discov 2(4):503–514

    Article  PubMed  CAS  Google Scholar 

  • Solon E (2013) Use of radioactive compounds and autoradiography to determine drug tissue distribution. Chem Res Toxicol 25(3):543–555

    Article  Google Scholar 

  • Solon E, Kraus L (2002) Quantitative whole-body autoradiography in the pharmaceutical. Survey results on study design, methods and regulatory compliance. J Pharmacol Toxicol Methods 43:73–81

    Google Scholar 

  • Solon EG, Lee F (2002) Methods determining phosphor imaging limits of quantitation in whole-body autoradiography rodent tissue distribution studies affect predictions of 14C human dosimetry. J Pharmacol Toxicol Methods 46:83–91

    Article  Google Scholar 

  • Solon E, Balani SK, Lee FW (2002) Whole-body autoradiography in drug discovery. Curr Drug Metab 3:451–462

    Article  PubMed  CAS  Google Scholar 

  • Solon EG, Dowell JA, Lee J, King SK, Damle BD (2007) Distribution of radioactivity in bone and related structures following administration of [14C]dalbavancin to New Zealand white rabbits. Antimicrob Agents Chemother 51(8):3008–3010

    Article  PubMed  CAS  Google Scholar 

  • Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12(1):11–26

    Article  PubMed  CAS  Google Scholar 

  • Sparvero LJ, Amoscato AA, Dixon CE, Long JB, Kochanek PM, Pitt BR, Bayir H, Kagan VE (2012) Mapping of phospholipids by MALDI imaging (MALDI-MSI): realities and expectations. Chem Phys Lipids 165(5):545–562

    Article  PubMed  CAS  Google Scholar 

  • Stauber JJ (2012) Quantitation by MS imaging: needs and challenges in pharmaceuticals. Bioanalysis 4(17):2095–2098

    Article  PubMed  CAS  Google Scholar 

  • Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260(2–3):195–202

    CAS  Google Scholar 

  • Strick R, Strissel PL, Gavrilov K, Levi-Setti R (2002) Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J Cell Biol 155:899–910

    Article  Google Scholar 

  • Stumpf WE (2003) Drug localization in tissues and cells. Library of Congress Control Number 2003105179. IDDC Press

    Google Scholar 

  • Stumpf WE (2005) Drug localization and targeting with receptor microscopic autoradiography. J Pharmacol Toxicol Methods 51:25–40

    Article  PubMed  CAS  Google Scholar 

  • Stumpf WE, Roth LJ (1964) Vacuum freeze drying of frozen sections for dry-mounting high resolution autoradiography. Stain Technol 39:219–223

    PubMed  CAS  Google Scholar 

  • Sjöquist B, Uhlin A, Byding P, Stjernschantz J (1999) Pharmacokinetics of latanoprost in the cynomolgus monkey. 2nd communication: repeated topical administration on the eye. Arzneimittelforschung 49:234–239

    Google Scholar 

  • Todd PJ, Schaff TG, Chaurand P, Caprioli RM (2001) Organic ion imaging of biological tissue with MALDI and SIMS. J Mass Spectrom 36:355–369

    Article  PubMed  CAS  Google Scholar 

  • Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprevote O (2005) Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom 16:1608–1618

    Article  PubMed  CAS  Google Scholar 

  • Touboul D, Roy S, Germain DP, Chaminade P, Brunelle A, Laprevote O (2007) MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int J Mass Spectrom 260:158–165

    Article  CAS  Google Scholar 

  • U.S. Food and Drug Administration (2010) Guidance for Industry and Researchers, The Radioactive Drug Research Committee: Human research without an investigational new drug application. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm. Accessed 09 Nov 2011

  • Ullberg S (1954) Studies on the distribution and fate of 35S-Labelled benzylpenicillin in the body. Acta Radiol Suppl 118:1–110

    PubMed  CAS  Google Scholar 

  • Van Berkel GJ et al (2008) Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom 43(4):500–508

    Article  PubMed  Google Scholar 

  • Venturi S, Venturi M (1999) Iodide, thyroid and stomach carcinogenesis: evolutionary story of a primitive antioxidant. Eur J Endocrinol 140:371–372

    Article  PubMed  CAS  Google Scholar 

  • Walker AV (2008) Why is SIMS underused in chemical and biological analysis? Challenges and opportunities. Anal Chem 80:8865–8870

    Article  PubMed  CAS  Google Scholar 

  • Williams MA (1969) In: Barer R, Cosslett VE (eds) Advances in optical and electron microscopy. Academic, New York, pp 219–272

    Google Scholar 

  • Willis RC, Richard B, Los K, Willis B, Ward K, Rios V, Strzemienski P, Solon E, Logue A, Lordi A, Onel E (2011) Quantitative whole-body autoradiography following single subcutaneous injection of [1-14C]-2-erucoyl)-DEPC DepoFoam® formulation in rats. Presented at the 38th Meeting of the Controlled Release Society, Presentation 124, 30 July–3 August 2011

    Google Scholar 

  • Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE et al (2008) Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Nat Acad Sci USA 105(47):18120–18125

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric G. Solon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Solon, E.G., Moyer, B.R. (2014). Quantitative Imaging Using Autoradiographic Techniques. In: Moyer, B., Cheruvu, N., Hu, TC. (eds) Pharmaco-Imaging in Drug and Biologics Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8247-5_6

Download citation

Publish with us

Policies and ethics