Skip to main content

Genetic Regulation of Early Eye Development in Non-dipteran Insects

  • Chapter
  • First Online:
Molecular Genetics of Axial Patterning, Growth and Disease in the Drosophila Eye
  • 820 Accesses

Abstract

Comparative analyses of eye development in Drosophila and distantly related phyla have fundamentally changed the way we think about the evolution of animal eyes today. On the one hand, it is clear that select eye-patterning mechanisms have deep evolutionary roots, such as the involvement of Pax6 and an ever-extending catalogue of additional transcription factors with selector gene-like functions in development. On the other hand, the diversity of distinct eye types in extant animals implies the evolution of lineage-specific patterning processes, superimposed onto the ancient gene interactions inherited from the prototype eye at the dawn of animal evolution. Therefore, an important question to consider is how far back the regulatory program organizing the development of the compound eye in Drosophila can be traced to arthropod evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allee JP, Pelletier CL, Fergusson EK, Champlin DT (2006) Early events in adult eye development of the moth, Manduca sexta. J Insect Physiol 52:450–460

    Article  PubMed  CAS  Google Scholar 

  • Anderson H (1978) Postembryonic development of the visual system of the locust, Schistocerca gregaria. I. Pattern of growth and developmental interactions in the retina and optic lobe. J Embryol Exp Morphol 45:55–83

    PubMed  CAS  Google Scholar 

  • Baker NE (2001) Master regulatory genes; telling them what to do. Bioessays 23:763–766

    Article  PubMed  CAS  Google Scholar 

  • Baonza A, Freeman M (2002) Control of Drosophila eye specification by Wingless signalling. Development 129:5313–5322

    Article  PubMed  CAS  Google Scholar 

  • Bennet RR, Tunstall J, Horridge GA (1967) Spectral sensitivity of single retinula cells in the locust. Z Vgl Physiol 55:195–206

    Article  Google Scholar 

  • Bentley D, Keshishian H, Shankland M, Toroian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol 54:47–74

    PubMed  CAS  Google Scholar 

  • Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS (2002) Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev 16:2415–2427

    Article  PubMed  CAS  Google Scholar 

  • Beutel RG, Friedrich F, Hörnschemeyer T, Pohl H, Hünefeld F, Beckmann F, Meier R, Misof B, Whiting MF, Vilhelmsen L (2011) Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics 27:341–355

    Article  Google Scholar 

  • Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle BA, Brown NL (2008) Isolation and expression of Pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn 237:2209–2219

    Article  PubMed  CAS  Google Scholar 

  • Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 186:119–128

    Article  CAS  Google Scholar 

  • Bodenstein D (1953) Postembryonic development. In: Roeder KD (ed) Insect Physiology. Wiley, New York, pp 275–367

    Google Scholar 

  • Brown SJ, Shippy TD, Miller S, Bolognesi R, Beeman RW, Lorenzen MD, Bucher G, Wimmer EA, Klingler M (2009) The red flour beetle, Tribolium castaneum (Coleoptera): a model for studies of development and pest biology. Cold Spring Harb Protoc pdb.emo126

    Google Scholar 

  • Buschbeck E, Friedrich M (2008) Evolution of insect eyes: tales of ancient heritage, deconstruction, reconstruction, remodeling and recycling. Evolution Education and Outreach 1:448–462

    Article  Google Scholar 

  • Buschbeck EK (2005) The compound lens eye of Strepsiptera: morphological development of larvae and pupae. Arthropod Struct Dev 34:315–326

    Article  Google Scholar 

  • Buschbeck EK, Roosevelt JL, Hoy RR (2001) Eye stalks or no eye stalks: a structural comparison of pupal development in the stalk-eyed fly Cyrtodiopsis and in Drosophila. J Comp Neurol 433:486–498

    Article  PubMed  CAS  Google Scholar 

  • Cavodeassi F, Diez Del Corral R, Campuzano S, Dominguez M (1999) Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126:4933–4942

    PubMed  CAS  Google Scholar 

  • Cavodeassi F, Modolell J, Campuzano S (2000) The Iroquois homeobox genes function as dorsal selectors in the Drosophila head. Development 127:1921–1929

    PubMed  CAS  Google Scholar 

  • Champlin DT, Truman JW (1998) Ecdysteroids govern two phases of eye development during metamorphosis of the moth, Manduca sexta. Development 125:2009–2018

    PubMed  CAS  Google Scholar 

  • Chang T, Mazotta J, Dumstrei K, Dumitrescu A, Hartenstein V (2001) Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128:4691–4704

    PubMed  CAS  Google Scholar 

  • Cho KO, Choi KW (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396:272–276

    Article  PubMed  CAS  Google Scholar 

  • Dearden P, Akam M (2000) A role for Fringe in segment morphogenesis but not segment formation in the grasshopper, Schistocerca gregaria. Development Genes Evolution 210:329–336

    Article  PubMed  CAS  Google Scholar 

  • Dominguez M, Casares F (2005) Organ specification-growth control connection: new in-sights from the Drosophila eye-antennal disc. Dev Dyn 232:673–684

    Article  PubMed  CAS  Google Scholar 

  • Dominguez M, de Celis JF (1998) A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396:276–278

    Article  PubMed  CAS  Google Scholar 

  • Dominguez M, Ferres-Marco D, Gutierrez-Avino FJ, Speicher SA, Beneyto M (2004) Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat Genet 36:31–39

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Friedrich M (2005) Comparative analysis of Wg patterning in the embryonic grasshopper eye. Dev Genes Evol 215:177–197

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Friedrich M (2010) Enforcing biphasic eye development in a directly developing insect by transient knockdown of single eye selector genes. J Exp Zool B Mol Dev Evol 314B:104–114

    Google Scholar 

  • Dong Y, Dinan L, Friedrich M (2003) The effect of manipulating ecdysteroid signaling on embryonic eye development in the locust Schistocerca americana. Dev Genes Evol 213:587–600

    Article  PubMed  CAS  Google Scholar 

  • Donner AL, Maas RL (2004) Conservation and non-conservation of genetic pathways in eye specification. Int J Dev Biol 48:743–753

    Article  PubMed  Google Scholar 

  • Duman-Scheel M, Pirkl N, Patel NH (2002) Analysis of the expression pattern of Mysidium columbiae wingless provides evidence for conserved mesodermal and retinal patterning processes among insects and crustaceans. Dev Genes Evol 212:114–123

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf A (1988) Evidence for the priming role of the central retinula cell in ommatidium differentiation of Ephestia kuehniella. Rouxs Arch Dev Biol 197:184–189

    Article  Google Scholar 

  • Erezyilmaz DF, Riddiford LM, Truman JW (2006) The pupal specifier broad directs progressive morphogenesis in a direct-developing insect. Proc Natl Acad Sci 103:6925–6930

    Article  PubMed  CAS  Google Scholar 

  • Fahrenbach WH (1969) The morphology of the eyes of Limulus. II. Ommatidia of the compound eye. Z Zellforsch Mikrosk Anat 93:451–483

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Friedrich M (2006) Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev Biol 299:310–329

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M (2008) Opsins and cell fate in the Drosophila Bolwig organ: tricky lessons in homology inference. Bioessays 30:980–993

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M, Benzer S (2000) Divergent decapentaplegic expression patterns in compound eye development and the evolution of insect metamorphosis. J Exp Zool B Mol Dev E 288:39–55

    Article  CAS  Google Scholar 

  • Friedrich M, Caravas J (2011) New insights from hemichordate genomes: prebilaterian origin and parallel modifications in the paired domain of the Pax gene eyegone. J Exp Zool B Mol Dev E 316:387–392

    Article  CAS  Google Scholar 

  • Friedrich M, Rambold I, Melzer RR (1996) The early stages of ommatidial development in the flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae). Dev Genes Evol 206:136–146

    Article  Google Scholar 

  • Friedrich M, Dong Y, Jackowska M (2006) Insect interordinal relationships: insights from the visual system. Arthropod Syst Phylogeny 64:133–148

    Google Scholar 

  • Gehring WJ (2002) The genetic control of eye development and its implications for the evolution of the various eye-types. Int. J. Dev Biol 46:65–73

    PubMed  Google Scholar 

  • Greenwood S, Struhl G (1999) Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126:5795–5808

    PubMed  CAS  Google Scholar 

  • Hafner GS, Tokarski TR (1998) Morphogenesis and pattern formation in the retina of the crayfish Procambarus clarkii. Cell Tissue Res 293:535–550

    Article  PubMed  CAS  Google Scholar 

  • Hafner GS, Tokarski TR (2001) Retinal development in the lobster Homarus americanus. Comparison with compound eyes of insects and other crustaceans. Cell Tissue Res 305:147–158

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Walossek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol 211:37–43

    Article  PubMed  CAS  Google Scholar 

  • Heberlein U, Wolff T, Rubin GM (1993) The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75:913–926

    Article  PubMed  CAS  Google Scholar 

  • Henze MJ, Dannenhauer K, Kohler M, Labhart T, Gesemann M (2012) Opsin evolution and expression in arthropod compound eyes and ocelli: Insights from the cricket Gryllus bimaculatus. BMC Evol Biol 12:163

    Article  PubMed  CAS  Google Scholar 

  • Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280

    Article  PubMed  Google Scholar 

  • Inoue Y, Miyawaki K, Terasawa T, Matsushima K, Shinmyo Y, Niwa N, Mito T, Ohuchi H, Noji S (2004) Expression patterns of dachshund during head development of Gryllus bimaculatus (cricket). Gene Expr Patterns 4:725–731

    Article  PubMed  CAS  Google Scholar 

  • Jackowska M, Bao R, Liu Z, McDonald EC, Cook TA, Friedrich M (2007) Genomic and gene regulatory signatures of cryptozoic adaptation: loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum. Front Zool 4:24

    Article  PubMed  CAS  Google Scholar 

  • Jun S, Wallen RV, Goriely A, Kalionis B, Desplan C (1998) Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition. Proc Natl Acad Sci U S A 95:13720–13725

    Article  PubMed  CAS  Google Scholar 

  • Kenyon KL, Ranade SS, Curtiss J, Mlodzik M, Pignoni F (2003) Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev Cell 5:403–414

    Article  PubMed  CAS  Google Scholar 

  • Klingler M (2004) Tribolium. Curr Biol 14:R639–R640

    Article  PubMed  CAS  Google Scholar 

  • Konopova B, Jindra M (2008) Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development 135:559–568

    Article  PubMed  CAS  Google Scholar 

  • Koyama T, Syropyatova MO, Riddiford LM (2008) Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone. Dev Biol 324:258–265

    Article  PubMed  CAS  Google Scholar 

  • Kozmik Z (2008) The role of Pax genes in eye evolution. Brain Res Bull 75:335–339

    Article  PubMed  CAS  Google Scholar 

  • Kristensen N (1999) Phylogeny of edopterygote insects, the most successful lineage of living organisms. Eur J Entomol 96:237–253

    Google Scholar 

  • Kronhamn J, Frei E, Daube M, Jiao R, Shi Y, Noll M, Rasmuson-Lestander A (2002) Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless. Development 129:1015–1026

    PubMed  CAS  Google Scholar 

  • Kumar JP (2009) The molecular circuitry governing retinal determination. Biochim Biophys Acta 1789:306–314

    Article  PubMed  CAS  Google Scholar 

  • Kumar JP, Moses K (2001) The EGF receptor and Notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development. Development 128:2689–2697

    PubMed  CAS  Google Scholar 

  • Labhart T, Keller K (1992) Fine structure and growth of the polarization-sensitive dorsal rim area in the compound eye of larval crickets. Naturwissenschaften 79:527–529

    Article  Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    Article  PubMed  CAS  Google Scholar 

  • Lamb T (2011) Evolution’s witness: how eyes evolved. Oxford University Press, USA

    Google Scholar 

  • Lee JD, Treisman JE (2001) The role of Wingless signaling in establishing the anteroposterior and dorsoventral axes of the eye disc. Development 128:1519–1529

    PubMed  CAS  Google Scholar 

  • Lee MSY, Jago JB, Garcia-Bellido DC, Edgecombe GD, Gehling JG, Paterson JR (2011) Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia. Nature 474:631–634

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Friedrich M (2004) The Tribolium homologue of glass and the evolution of insect larval eyes. Dev Biol 269:36–54

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yang X, Dong Y, Friedrich M (2006) Tracking down the “head blob”: comparative analysis of wingless expression in the embryonic insect procephalon reveals progressive reduction of ocular segment patterning in higher insects. Arthropod Struct Dev 35:341–356

    Article  PubMed  Google Scholar 

  • Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MW (2007) Oogenesis-flight syndrome in crickets: age-dependent egg production, flight performance, and biochemical composition of the flight muscles in adult female Gryllus bimaculatus. J Insect Physiol 53:819–832

    Article  PubMed  CAS  Google Scholar 

  • Lynch V, Wagner G (2011) Revisiting a classic example of transcription factor functional equivalence: are Eyeless and Pax6 functionally equivalent or divergent? J Exp Zool B Mol Dev Evol 316B:93–98

    Article  PubMed  CAS  Google Scholar 

  • Ma CY, Zhou Y, Beachy PA, Moses K (1993) The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell 75:927–938

    Article  PubMed  CAS  Google Scholar 

  • MacWhinnie SGB, Allee JP, Nelson CA, Riddiford LM, Truman JW, Champlin DT (2005) The role of nutrition in creation of the eye imaginal disc and initiation of metamorphosis in Manduca sexta. Dev Biol 285:285–297

    Article  PubMed  CAS  Google Scholar 

  • Maderspacher F, Bucher G, Klingler M (1998) Pair-rule and gap gene mutants in the flour beetle Tribolium castaneum. Dev Genes Evol 208:558–568

    Article  PubMed  CAS  Google Scholar 

  • Mahfooz NS, Li H, Popadić A (2004) Differential expression patterns of the hox gene are associated with differential growth of insect hind legs. Proc Natl Acad Sci U S A 101:4877–4882

    Article  PubMed  CAS  Google Scholar 

  • Maurel-Zaffran C, Treisman JE (2000) pannier acts upstream of wingless to direct dorsal eye disc development in Drosophila. Development 127:1007–1016

    PubMed  CAS  Google Scholar 

  • Melzer RR, Paulus HF (1989) Evolutionswege zum Larvalauge der Insekten -Die Stemmata der höheren Dipteren und ihre Abwandlung zum Bolwig-Organ. Z Zool Syst Evolutionsforsch 27:200–245

    Article  Google Scholar 

  • Melzer RR, Michalke C, Smola U (2000) Walking on insect paths? Early ommatidial development in the compound eye of the ancestral crustacean, Triops cancriformis. Naturwissenschaften 87:308–311

    Article  PubMed  CAS  Google Scholar 

  • Mito T, Noji S (2008) The two-spotted cricket Gryllus bimaculatus: an emerging model for developmental and regeneration studies. Cold Spring Harb Protoc: pdb.emo110

    Google Scholar 

  • Monsma SA, Booker R (1996) Genesis of the adult retina and outer optic lobes of the moth, Manduca sexta. I. patterns of proliferation and cell death. J Comp Neurol 367:10–20

    Article  PubMed  CAS  Google Scholar 

  • Moreaux L, Laurent G (2007) Estimating firing rates from calcium signals in locust projection neurons in vivo. Front Neural Circuits 1:2

    Article  PubMed  Google Scholar 

  • Moses K, Rodrigues AB (2004) Growth and specification: fly Pax6 homologs eyegone and eyeless have distinct functions. Bioessays 26:600–603

    Article  PubMed  CAS  Google Scholar 

  • Müller C, Rosenberg J, Richter S, Meyer-Rochow V (2003) The compound eye of Scutigera coleoptrata (Linnaeus, 1758)(Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the Mandibulata concept. Zoomorphology 122:191–209

    Article  Google Scholar 

  • Nilsson D-E (1996) Eye ancestry: old genes for new eyes. Curr Biol 6:39–42

    Article  PubMed  CAS  Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Tomlinson A, Panin VM, Rauskolb C, Irvine KD (1998) Dorsal-ventral signaling in the Drosophila eye. Science 281:2031–2034

    Article  PubMed  CAS  Google Scholar 

  • Park T (1934) Observations on the general biology of the flour beetle, Tribolium confusum. Quart Rev Biol 9:36–64

    Article  Google Scholar 

  • Parthasarathy R, Tan A, Bai H, Palli SR (2008) Transcription factor broad suppresses precocious development of adult structures during larval–pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mech Dev 125:299–313

    Article  PubMed  CAS  Google Scholar 

  • Paterson JR, Garcia-Bellido DC, Lee MSY, Brock GA, Jago JB, Edgecombe GD (2011) Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480:237–240

    Article  PubMed  CAS  Google Scholar 

  • Perez-Mendoza J, Campbell JF, Throne JE (2011) Effects of rearing density, age, sex, and food deprivation on flight initiation of the red flour beetle (Coleoptera: Tenebrionidae). J Econ Entomol 104:443–451

    Article  PubMed  Google Scholar 

  • Perron M, Kanekar S, Vetter ML, Harris WA (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol 199:185–200

    Article  PubMed  CAS  Google Scholar 

  • Pichaud F, Casares F (2000) homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc. Mech Dev 96:15–25

    Article  PubMed  CAS  Google Scholar 

  • Pichaud F, Desplan C (2002) Pax genes and eye organogenesis. Current Opionion in Genetics and. Development 12:430–434

    CAS  Google Scholar 

  • Posnien N, Schinko JB, Kittelmann S, Bucher G (2010) Genetics, development and composition of the insect head–a beetle’s view. Arthropod Struct Dev 39:399–410

    Article  PubMed  Google Scholar 

  • Postlethwait JH, Schneiderman HA (1971) A clonal analysis of development in Drosophila melanogaster: morphogenesis, determination and and growth in the wild type antenna. Dev Biol 24:477–519

    Article  PubMed  CAS  Google Scholar 

  • Prpic NM, Wigand B, Damen WG, Klingler M (2001) Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol 211:467–477

    Article  PubMed  CAS  Google Scholar 

  • Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:36

    Article  PubMed  CAS  Google Scholar 

  • Reifegerste R, Moses K (1999) Genetics of epithelial polarity and pattern in the Drosophila retina. Bioessays 21:275–285

    Article  PubMed  CAS  Google Scholar 

  • Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Bucher G, Friedrich M, Grimmelikhuijzen CJ, Klingler M, Lorenzen M, Roth S, Schroder R, Tautz D, Zdobnov EM, Muzny D, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, Davis C, Chacko J, Dinh H, Dugan-Rocha S, Fowler G, Garner TT, Garnes J, Gnirke A, Hawes A, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Jackson L, Kovar C, Kowis A, Lee S, Lewis LR, Margolis J, Morgan M, Nazareth LV, Nguyen N, Okwuonu G, Parker D, Ruiz SJ, Santibanez J, Savard J, Scherer SE, Schneider B, Sodergren E, Vattahil S, Villasana D, White CS, Wright R, Park Y, Lord J, Oppert B, Brown S, Wang L, Weinstock G, Liu Y, Worley K, Elsik CG, Reese JT, Elhaik E, Landan G, Graur D, Arensburger P, Atkinson P, Beidler J, Demuth JP, Drury DW, Du YZ, Fujiwara H, Maselli V, Osanai M, Robertson HM, Tu Z, Wang JJ, Wang S, Song H, Zhang L, Werner D, Stanke M, Morgenstern B, Solovyev V, Kosarev P, Brown G, Chen HC, Ermolaeva O, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Maglott D, Pruitt K, Sapojnikov V, Souvorov A, Mackey AJ, Waterhouse RM, Wyder S, Kriventseva EV, Kadowaki T, Bork P, Aranda M, Bao R, Beermann A, Berns N, Bolognesi R, Bonneton F, Bopp D, Butts T, Chaumot A, Denell RE, Ferrier DE, Gordon CM, Jindra M, Lan Q, Lattorff HM, Laudet V, von Levetsow C, Liu Z, Lutz R, Lynch JA, da Fonseca RN, Posnien N, Reuter R, Schinko JB, Schmitt C, Schoppmeier M, Shippy TD, Simonnet F, Marques-Souza H, Tomoyasu Y, Trauner J, Van der Zee M, Vervoort M, Wittkopp N, Wimmer EA, Yang X, Jones AK, Sattelle DB, Ebert PR, Nelson D, Scott JG, Muthukrishnan S, Kramer KJ, Arakane Y, Zhu Q, Hogenkamp D, Dixit R, Jiang H, Zou Z, Marshall J, Elpidina E, Vinokurov K, Oppert C, Evans J, Lu Z, Zhao P, Sumathipala N, Altincicek B, Vilcinskas A, Williams M, Hultmark D, Hetru C, Hauser F, Cazzamali G, Williamson M, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Raible F, Walden KK, Angeli S, Foret S, Schuetz S, Maleszka R, Miller SC, Grossmann D (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  PubMed  CAS  Google Scholar 

  • Ridley AW, Hereward JP, Daglish GJ, Raghu S, Collins PJ, Walter GH (2011) The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult flight and gene flow. Mol Ecol 20:1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Rogers SM, Harston GW, Kilburn-Toppin F, Matheson T, Burrows M, Gabbiani F, Krapp HG (2010) Spatiotemporal receptive field properties of a looming-sensitive neuron in solitarious and gregarious phases of the desert locust. J Neurophysiol 103:779–792

    Article  PubMed  Google Scholar 

  • Roonwal ML (1936) Studies on the embryology of the African migratory locust, Locusta migratoria migratorioides Reiche and Frm. (Orthoptera, Acrididae) II-Organogeny. Philos Trans R Soc Lond B 227:175–244

    Google Scholar 

  • Salvini-Plawen L, Mayr E (1977) On the evolution of photoreceptors and eyes. Evol Biol 10:207–263

    Article  Google Scholar 

  • Sanchez D, Ganfornina MD, Bastiani M (1995) Contributions of an orthopteran to the understanding of neuronal pathfinding. Immunol Cell Biol 73:565–574

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Matsunaga TM, Futahashi R, Kojima T, Mita K, Banno Y, Fujiwara H (2008) Positional cloning of a Bombyx wingless locus flugellos (fl) reveals a crucial role for fringe that is specific for wing morphogenesis. Genetics 179:875–885

    Article  PubMed  CAS  Google Scholar 

  • Savard J, Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH, Tettelin H, Lercher MJ (2006) Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of holometabolous insects. Genome Res 16:1334–1338

    Article  PubMed  CAS  Google Scholar 

  • Schinko J, Hillebrand K, Bucher G (2012) Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Dev Genes Evol 222:287–298

    Article  PubMed  CAS  Google Scholar 

  • Schroder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422:621–625

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Kango-Singh M, Parthasarathy R, Gopinathan KP (2007) Larval legs of mulberry silkworm Bombyx mori are prototypes for the adult legs. Genesis 45:169–176

    Article  PubMed  Google Scholar 

  • Smith WC, Price DA, Greenberg RM, Battelle BA (1993) Opsins from the lateral eyes and ocelli of the horseshoe-crab, Limulus polyphemus. Proc Natl Acad Sci U S A 90:6150–6154.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff A (1972) The biology of Tribolium. Clarendon Press, Oxford

    Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Truman JW, Riddiford LM (2008) The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development 135:569–577

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Squires DC, Riddiford LM (2009) Larval leg integrity is maintained by Distal-less and is required for proper timing of metamorphosis in the flour beetle, Tribolium castaneum. Dev Biol 326:60–67

    Article  PubMed  CAS  Google Scholar 

  • Takagi A, Kurita K, Terasawa T, Nakamura T, Bando T, Moriyama Y, Mito T, Noji S, Ohuchi H (2012) Functional analysis of the role of eyes absent and sine oculis in the developing eye of the cricket Gryllus bimaculatus. Dev Growth Differ 54:227–240

    Article  PubMed  CAS  Google Scholar 

  • Towner P, Harris P, Wolstenholme AJ, Hill C, Worm K, Gartner W (1997) Primary structure of locust opsins: a speculative model which may account for ultraviolet wavelength light detection. Vision Res 37:495–503

    Article  PubMed  CAS  Google Scholar 

  • Treisman JE, Rubin GM (1995) wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development 121:3519–3527

    PubMed  CAS  Google Scholar 

  • Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol 47:467–500

    Article  PubMed  CAS  Google Scholar 

  • Truman JW, Hiruma K, Allee JP, MacWhinnie SGB, Champlin DT, Riddiford LM (2006) Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 312:1385–1388

    Article  PubMed  CAS  Google Scholar 

  • Uhlirova M, Foy BD, Beaty BJ, Olson KE, Riddiford LM, Jindra M (2003) Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci U S A 100:15607–15612

    Article  PubMed  CAS  Google Scholar 

  • Vishnevskaya TM, Cherkasov AD, Shura-Bura TM (1985) Spectral sensitivity of photoreceptors in the compound eye of the locust. Neurophysiology 18:69–76

    Google Scholar 

  • Wiegmann BM, Trautwein MD, Kim JW, Cassel BK, Bertone MA, Winterton SL, Yeates DK (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:34

    Article  PubMed  CAS  Google Scholar 

  • Wieschaus E, Gehring W (1976) Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev Biol 50:249–263

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Garrard P, McGinness S (1978) The unit structure of the locust compound eye. Cell Tiss Res 195:205–226

    CAS  Google Scholar 

  • Yang X, Weber M, ZarinKamar N, Wigand B, Posnien G, Friedrich R, Beutel R, Damen W, Bucher G, Klingler M, Friedrich M (2009a) Probing the Drosophila retinal determination gene network in Tribolium (II): the Pax6 genes eyeless and twin of eyeless. Dev Biol 333:215–227

    Article  CAS  Google Scholar 

  • Yang X, ZarinKamar N, Bao R, Friedrich M (2009b) Probing the Drosophila retinal determination gene network in Tribolium (I): the early retinal genes dachshund, eyes absent and sine oculis. Dev Biol 333:202–214

    Article  CAS  Google Scholar 

  • Yu L, Zhou Q, Zhang C, Pignoni F (2012) Identification of Bombyx atonal and functional comparison with the Drosophila atonal proneural factor in the developing fly eye. Genesis 50:393–403

    Article  PubMed  CAS  Google Scholar 

  • ZarinKamar N, Yang X, Bao R, Friedrich F, Beutel R, Friedrich M, 2011. The Pax gene eyegone facilitates repression of eye development in Tribolium. Evodevo 2:8

    Article  PubMed  CAS  Google Scholar 

  • Zuker CS (1994) On the evolution of eyes: would you like it simple or compound? Science 265:742–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Amit Singh for the invitation to provide this book chapter, Rewaa Yas for meticulous proofreading of the manuscript,and Dr. Sumihare Noji for providing Fig. 7. Research in the Friedrich lab has been supported by NSF awards IOS 0951886, IOS 0091926, and EF-0334948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedrich, M., Dong, Y., Liu, Z., Yang, I. (2013). Genetic Regulation of Early Eye Development in Non-dipteran Insects. In: Singh, A., Kango-Singh, M. (eds) Molecular Genetics of Axial Patterning, Growth and Disease in the Drosophila Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8232-1_11

Download citation

Publish with us

Policies and ethics