Skip to main content

Cubic GaN on Nanopatterned 3C-SiC/Si (001) Substrates

  • Chapter
  • First Online:
Book cover Silicon-based Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 187))

Abstract

In this chapter we demonstrate the growth and characterization of nonpolar relaxed cubic GaN by plasma-assisted molecular beam epitaxy on prepatterned 3C-SiC/Si (001) substrates. Nanopatterning of 3C-SiC/Si (001) was achieved by two different fabrication techniques: nanosphere lithography (NSL) to generate large-area pattern, and conventional electron beam lithography (EBL) for tailoring particular surface morphologies. Both methods were followed by a lift-off and a reactive ion etching (RIE) process. We analyze the influence of the substrate on the GaN growth and show that it is possible to grow single phase and defect-reduced cubic GaN crystals on 3C-SiC nanostructures. Furthermore cubic GaN/AlN multiquantum wells were grown on 3C-SiC nanostructures, which is a further step toward nanoscaled device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura, S., Mukai, I., Senok, M.: Candelaclass highbrightness InGaN/AlGaN doubleheterostructure bluelight emitting diodes. Appl. Phys. Lett. 64, 1687 (1994)

    Google Scholar 

  2. Rajan, S., Waltereit, P., Poblenz, C., Heikman, S.J., Green, D.S., Speck, J.S., Mishra, U.K.: Power Performance of AlGaN-GaN HEMTs Grown on SiC by Plasma-Assisted MBE. IEEE Electron Device Lett. 25, 247 (2004)

    Google Scholar 

  3. Tschumak, E., Granzer, R., Lindner, J.K.N., Schweiz, F., Lischka, K., Nagasawa, H., Abe, M., As, D.J.: Nonpolar cubic AlGaN/GaN heterojunction field-effect transistor on Ar+implanted 3C-SiC (001). Appl. Phys. Lett. 96, 253501 (2010)

    Google Scholar 

  4. Fitzgerald, E.A., Watson, G.P., Proano, R.E., Ast, D.G.: Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area. J. Appl. Phys. 65, 2220 (1989)

    Google Scholar 

  5. Zubia, D., Hersee, S.D.: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. J. Appl. Phys. 85, 6492 (1999)

    Google Scholar 

  6. Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., Eastman, L.F.: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter 14, 3399–3434 (2002)

    Google Scholar 

  7. Bernardini, F., Fiorentini, V., Vanderbilt, D.: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10 024 (1997)

    Google Scholar 

  8. Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menninger, J., Reiche, M., Ploog, K.H.: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000)

    Google Scholar 

  9. Schörmann, J., Potthast, S., As, D.J., Lischka, K.: In situ growth regime characterization of cubic GaN using reflection high energy electron diffraction. Appl. Phys. Lett. 90, 041918 (2009)

    Google Scholar 

  10. Novikov, S.V., Stanton, N.M., Campion, R.P., Foxon, C.T., Kent, A.J.: Free-standing zinc-blende (cubic) GaN layers and substrates. J. Crystal Growth 310, 3964 (2008)

    Google Scholar 

  11. Gay, P., Hirsch, P.B., Kelly, A.: The estimation of dislocation densities in metals from x-ray data. Acta Metallurgica 1, 315 (1953)

    Google Scholar 

  12. DeCuir Jr, E.A., Manasreh, M.O., Tschumak, E., Schörmann, J., As, D.J., Lischka, K.: Cubic GaN/AlN multiple quantum well photodetector. Appl. Phys. Lett. 92, 201910 (2008)

    Google Scholar 

  13. Kemper, R.M., Häberlen, M., Schupp, T., Weinl, M., Bürger, M., Ruth, M., Meier, C., Niendorf, T., Maier, H.J., Lischka, K., As, D.J., Lindner, J.K.N.: Formation of defects in cubic GaN grown on nano-patterned 3C-SiC (001). Phys. Stat. Sol. (c) 9(3–4), 1028 (2012)

    Google Scholar 

  14. Sun, X.Y., Bommena, R., Burckel, D., Frauenglass, A., Fairchild, M.N., Brueck, S.R.J., Garett, G.A., Wraback, M., Hersee, S.D.: Defect reduction mechanisms in the nanoheteroepitaxy of GaN on SiC. J. of Appl. Phys. 95, 1450 (2004)

    Google Scholar 

  15. Haynes, C.L., Van Duyne, R.P.: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105(24), 5599–5611 (2001)

    Google Scholar 

  16. Chassagne, T., Leycuras, A., Balloud, C., Arcade, P., Peyre, H., Juillaguet, S.: Investigation of 2 inch SiC layers grown in a resistively-heated LP-CVD reactor with horizontal hot-walls. Mater. Sci. Forum 457–460, 273–276 (2004)

    Google Scholar 

  17. Cicero, G., Catellani, A., Galli, G.: Interaction of Water Molecules with SiC(001) Surfaces. J. Phys. Chem. B 108, 16518 (2004)

    Google Scholar 

  18. Lindner, J.K.N., Seider, C., Fischer, F., Weinl, M., Stritzker, B.: Regular surface patterns by local swelling induced by He implantation into silicon through nanosphere lithography masks. Nucl. Instr. Meth. B 267, 1394 (2009)

    Google Scholar 

  19. Gogel, D., Weinl, M., Lindner, J.K.N., Stritzker, B.: Plasma modification of nanosphere lithography masks made of polystyrene beads. J. Optoelectron. Adv. Mater. 12, 740 (2010)

    Google Scholar 

  20. Hiller, L., Stauden, T., Kemper, R.M., Lindner, J.K.N., As, D.J., Pezoldt, J.: ECR-etching of submicron and nanometer sized 3C-SiC(100) mesa structures. Mater. Sci. Forum 717–720, 901 (2012)

    Google Scholar 

  21. Kemper, R.M., Hiller, L., Stauden, T., Pezoldt, J., Duschik, K., Niendorf, T., Maier, H.J., Meertens, D., Tillmann, K., As, D.J., Lindner, J.K.N.: Growth of cubic GaN on 3C-SiC/Si (001) nanostructures. J. Cryst. Growth (2012). doi:10.1016/j.jcrysgro.2012.10.011

  22. As, D. J.: Growth and characterization of MBE-grown cubic GaN, \({\text{ In }}_{\text{ x }}\) \({\text{ Ga }_\text{1-x }}\text{ N },\) \({\text{ and }}\) \({\text{ Al }}_{\text{ y }}\) \({\text{ Ga }_\text{1-y }}{\text{ N }}.\) In: Manasreh, M.O. (ed.) Optoelectronic Properties of Semiconductors and Superlattices, Vol. 19, Chap. 9, pp. 323–450. Taylor and Francis, New York (2003)

    Google Scholar 

  23. As, D.J., Potthast, S., Schörmann, J., Li, S.F., Lischka, K., Nagasawa, H., Abe, M.: Molecular Beam Epitaxy of Cubic Group III-Nitrides on free-standing 3C-SiC substrates. Mater. Sci. Forum 527, 1489 (2006)

    Google Scholar 

  24. Northrup, J.E., Neugebauer, J., Feenstra, R.M., Smith, A.R.: Structure of GaN (0001): The laterally contracted Ga bilayer model. Phys. Rev. B 61, 9932 (2000)

    Google Scholar 

  25. Koblmüller, G., Brown, J., Averbeck, R., Riechert, H., Pongratz, P., Speck, J.S.: Continuous evolution of Ga adlayer coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. Appl. Phys. Lett. 86, 041908 (2005)

    Google Scholar 

  26. Brandt, O., Sun, Y.J., Däweritz, L., Ploog, K.H.: Ga adsorption and desorption kinetics on M-plane GaN. Phys. Rev. B 69, 165326 (2004)

    Google Scholar 

  27. Schikora, D., Hankeln, M., As, D.J., Lischka, K., Litz, T., Waag, A., Buhrow, T., Henneberger, F.: Epitaxial growth and optical transitions of cubic GaN films. Phys. Rev. B 54, 8381 (1996)

    Google Scholar 

  28. Feuillet, G., Hamaguchi, H., Ohta, K., Hacke, P., Okumura, H., Yoshida, S.: Arsenic mediated reconstructions on cubic (001) GaN. Appl. Phys. Lett. 70, 1025 (1997)

    Google Scholar 

  29. Neugebauer, J., Zywietz, Z., Scheffler, M., Northrup, J.E., Van der Walle, C.G.: Clean and As-Covered Zinc-Blende GaN (001) Surfaces: Novel Surface Structures and Surfactant Behavior. Phys. Rev. Lett. 80, 3097 (1998)

    Google Scholar 

  30. Mula, G., Adelmann, C., Moehl, S., Oullier, J., Daudin, B.: Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001). Phys. Rev. B 64, 195406 (2001)

    Google Scholar 

  31. Adelmann, C., Brault, J., Jalabert, D., Gentile, P., Mariette, H., Mula, G., Daudin, B.: Dynamically stable gallium surface coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. J. Appl. Phys. 91, 9638 (2002)

    Google Scholar 

  32. Nagayama, A., Sawada, H., Takuma, E., Katayama, R., Onabe, K., Ichinose, H., Shiraki, Y.: Structural study on stacking faults in GaN/GaAs (001) heterostructures. Inst. Phys. Conf. Ser. 170, 749 (2002)

    Google Scholar 

  33. Ayers, J.E.: New model for the thickness and mismatch dependencies of threading dislocation densities in mismatched heteroepitaxial layers. J. Appl. Phys. 78, 3724 (1995)

    Google Scholar 

  34. Okumura, H., Ohta, K., Feuillet, G., Balakrishnan, K., Chichibu, S., Hamaguchi, H., Hacke, P., Yoshida, S.: Growth and characterization of cubic GaN. J. Cryst. Growth 178, 113 (1997)

    Google Scholar 

  35. Daudin, B., Feuillet, G., Hübner, J., Samson, Y., Widmann, F., Philippe, A., Bru-Chevallier, C., Guillot, G., Bustarret, E., Bentoumi, G., Deneuville, A.: How to grow cubic GaN with low hexagonal phase content on (001) SiC by molecular beam epitaxy. J. Appl. Phys. 84, 2295 (1998)

    Google Scholar 

  36. Kemper, R.M., Weinl, M., Kemper, R.M., Weinl, M., Mietze, C., Häberlen, M., Schupp, T., Tschumak, E., Lindner, J.K.N., Lischka, K., As, D.J.: Growth of cubic GaN on nano-patterned 3C-SiC/Si (001) substrates. J. Cryst. Growth 323, 84 (2011)

    Google Scholar 

  37. Taylor, A., Jones, R.M.: The crystal structure and the thermal expansion of cubic and hexagonal silicon carbide, Silicon Carbide-A High Temperature Semiconductor, edited by J.R.O Connor, J. Smiltens, Oxford, Symposium Publications Division, Pergamon Press, 1960, Section III, Chap.1, p.147 (1960)

    Google Scholar 

  38. Strite, S., Juan, J., Li, Z., Salvador, A., Chen, H., Smith, D.J., Choyke, W.J., Morkoc, H., Vac, J.: An investigation of the properties of cubic GaN grown on GaAs by plasma-assisted molecular-beam epitaxy. J. Vac. Sci. Technol. B9(4), 1924 (1991)

    Google Scholar 

  39. Wu, J., Yaguchi, H., Zhang, B.P., Segawa, Y., Onabe, K., Shiraki, Y.: Optical properties of cubic GaN grown on 3C-SiC (100) substrates by metalorganic vapor phase epitaxy. Phys. Stat. Sol. (a) 180, 403 (2000)

    Google Scholar 

  40. Sanorpim, S., Takuma, E., Ichinose, H., Katayama, R., Onabe, K.: Structural transition control of laterally overgrown c-GaN and h-GaN on stripe-patterned GaAs (001) substrates by MOVPE. Phys. Stat. Sol. (b) 244(6), 1769 (2007)

    Google Scholar 

  41. Stadelmann, P.A.: EMS - A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21(2), 131 (1987)

    Google Scholar 

  42. As, D.J., Schmilgus, F., Wang, C., Schöttker, B., Schikora, D., Lischka, K.: The near band edge photoluminescence of cubic GaN epilayers. Appl. Phys. Lett. 70, 1311 (1997)

    Google Scholar 

  43. Nagasawa, H., Abe, M., Yagi, K., Kawahara, T., Hatta, N.: Fabrication of high performance 3C-SiC vertical MOSFETs by reducing planar defects. Phys. Stat. Sol. (b) 245(7), 1272–1280 (2008)

    Google Scholar 

  44. Kemper, R.M., Schupp, T., Häberlen, M., Niendorf, T., Maier, H.-J., Dempewolf, A., Bertram, F., Christen, J., Kirste, R., Hoffmann, A., Lindner, J., As, D.J.: Anti-phase domains in cubic GaN. J. Appl. Phys. 110, 123512 (2011)

    Google Scholar 

  45. Reimer, L.: Scanning Electron Microscopy, 2nd edn, pp. 368–374. Springer, New York (1998)

    Google Scholar 

  46. Zainal, N., Novikov, S.V., Mellor, C.J., Foxon, C.T., Kent, A.J.: Current-voltage characteristics of zinc-blende (cubic) Al0.3Ga0.7N/GaN double barrier resonant tunneling diodes. Appl. Phys. Lett. 97, 112102 (2010)

    Google Scholar 

  47. Mietze, C., Lischka, K., As, D.J.: Current-voltage characteristics of cubic Al(Ga)N/GaN double barrier structures on 3C-SiC. Phys. Stat. Sol. (a) 209(3), 439 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank L. Hiller, Th. Stauden and J. Pezoldt (TU Ilmenau) for patterning the substrates with electron beam lithography and reactive ion etching. The authors also wish to thank Th. Niendorf, K. Duschik and H.-J. Maier (University of Paderborn) for EBSD and some of the TEM measurements. We thank M. Ruth and C. Meier (University of Paderborn) for the micro-photoluminescence measurements. Furthermore we thank the team of the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) at Forschungszentrum Jülich, in particular D. Meertens, M. Luysberg and K. Tillmann for access to and comprehensive support at the FIB and TEM facilities of ER-C. Part of the work at Paderborn was financially supported by German Science Foundation (As(107/4-1)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricarda Maria Kemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kemper, R.M., As, D.J., Lindner, J.K.N. (2013). Cubic GaN on Nanopatterned 3C-SiC/Si (001) Substrates. In: Li, H., Wu, J., Wang, Z. (eds) Silicon-based Nanomaterials. Springer Series in Materials Science, vol 187. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8169-0_15

Download citation

Publish with us

Policies and ethics