Skip to main content

Size-dependent Electronic and Polarization Properties of Multi-Layer InAs Quantum Dot Molecules

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 14))

Abstract

In this chapter, we analyze the polarization response of multi-layer quantum dot molecules (QDMs) containing up to nine vertically stacked quantum dot layers by carrying out a systematic set of multi-million atom simulations. The atomistic modeling and simulations allow us to include correct symmetry properties in the calculations of the electronic and optical spectra: a factor critical to explain the experimental evidence. The values of the degree of polarization (DOP) calculated from our model based on the geometry parameters directly extracted from the experimental TEM images follow the trends of the recently published experimental data. We also present detailed physical insight of the fundamental underlying physics by examining strain profiles, band edges diagrams, and wave function plots. Multi-directional calculations of the DOP reveal a unique property of the InAs QDMs that the TE response in the plane perpendicular to the growth direction is highly anisotropic. Therefore we propose that a single value of the DOP is not sufficient to fully characterize the polarization response. We explain this anisotropy of the TE modes in terms of the orientation of the hole wave functions that align along the [\(\bar{1}10\)] direction. Our results provide a new insight that the isotropic polarization response measured in the experimental PL spectra is due to two factors: (i) TM[001] mode increases due to enhanced intermixing of HH and LH bands and (ii) TE[110] mode reduces significantly due to the hole wave function alignments along the [\(\bar{1}10\)] direction. This is in contrast to general notion that only an increase in the TM[001] mode is responsible for the isotropic polarization. We also present polarization response as a function of various geometry configurations of the quantum dot layers to provide a guide to experimentalists for the design of optical devices based on multi-layer QDMs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Salhi, A., Raino, G., Fortunato, L., Tasco, V., Visimberga, G., Martiradonna, L., Todaro, M., Giorgi, M.D., Cingolani, R., Trampert, A., Vittorio, M.D., Passaseo, A.: IEEE J. Sel. Top. Quant. Electron. 14, 1188 (2008)

    Article  CAS  Google Scholar 

  2. Akiyama, T., Sugawara, M., Arakawa, Y.: Proc. IEEE 95, 1757 (2007)

    Article  CAS  Google Scholar 

  3. Dousse, A., Suffczyński, J., Beveratos, A., Krebs, O., Lemaître, A., Sagnes, I., Bloch, J., Voisin, P., Senellart, P.: Nature 466, 217 (2010)

    Article  CAS  Google Scholar 

  4. Usman, M., Inoue, T., Harda, Y., Klimeck, G., Kita, T.: Phys. Rev. B 84, 115321 (2011)

    Article  Google Scholar 

  5. Usman, M., Heck, S., Clarke, E., Ryu, H., Murray, R., Klimeck, G.: J. Appl. Phys. 109, 104510 (2011)

    Article  Google Scholar 

  6. Fortunato, L., Todaro, M., Tasco, V., Giorgi, M.D., Vittorio, M.D., Cingolani, R., Passaseo, A.: Superlattice Microst. 47, 72 (2010)

    Article  CAS  Google Scholar 

  7. Usman, M., Tasco, V., Todaro, M., Georgi, M.D., O’Reilly, E.P., Klimeck, G., Passaseo, A.: IOP Nanotechnology 23, 165202 (2012)

    Article  Google Scholar 

  8. Saito, T., Ebe, H., Arakawa, Y., Kakitsuka, T., Sugawara, M.: Phys. Rev. B 77, 195318 (2008)

    Article  Google Scholar 

  9. Inoue, T., Asada, M., Yasuoka, N., Kojima, O., Kita, T., Wada, O.: Appl. Phys. Lett. 96, 211906 (2010)

    Article  Google Scholar 

  10. Usman, M.: Phys. Rev. B 86, 155444 (2012)

    Article  Google Scholar 

  11. Biasoil, G., Heun, S.: Phys. Rep. 500, 117 (2011)

    Article  Google Scholar 

  12. Stevenson, R., Thompson, R.M., Shields, A.J., Farrer, I., Kardynal, B.E., Ritchie, D.A., Pepper, M.: Phys. Rev. B 66, 081302 (2002)

    Article  Google Scholar 

  13. Plumhof, J.D., Křápek, V., Ding, F., Jöns, K.D., Hafenbrak, R., Klenovský, P., Herklotz, A., Dörr, K., Michler, P., Rastelli, A., Schmidt, O.G.: Phys. Rev. B 83, 121302(R) (2011)

    Google Scholar 

  14. Pryor, C., Flatte, M.: Phys. Rev. Lett. 91, 257901 (2003)

    Article  CAS  Google Scholar 

  15. Fricke, M., Lorke, A., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Europhys. Lett. 36(3), 197 (1996)

    Article  CAS  Google Scholar 

  16. Křápek, V., Kuldová, K., Oswald, J., Hospodková, A., Hulicius, E., Humlıcek, J.: Appl. Phys. Lett. 89, 153108 (2006)

    Article  Google Scholar 

  17. Hospodkova, A., řá, V., Mates, T., Kuldová, K., Pangrac, J., Hulicius, E., Oswald, J., Melichar, K., Humlicek, J., Simecek, T.: J. Cryst. Growth 298, 570 (2007)

    Google Scholar 

  18. Songmuang, R., Kiravittaya, S., Schmidt, O.G.: J. Cryst. Growth 249, 416 (2003)

    Article  CAS  Google Scholar 

  19. Favero, I., Cassabois, G., Jankovic, A., Ferreira, R., Darson, D., Voisin, C., Delalande, C., Roussignol, P., Badolato, A., Petroff, P.M., Gérard, J.M.: Appl. Phys. Lett. 86, 041904 (2005)

    Article  Google Scholar 

  20. Usman, M., Ahmed, S., Klimeck, G.: In: Proceedings of the 8th IEEE Conference on Nanotechnology (IEEE-Nano), Arlington, TX, pp. 541–544 (2008)

    Google Scholar 

  21. Kojima, O., Nakatani, H., Kita, T., Wada, O., Akahane, K., Tsuchiya, M.: J. Appl. Phys. 103, 113504 (2008)

    Article  Google Scholar 

  22. Kojima, O., Nakatani, H., Kita, T., Wada, O., Akahane, K.: J. Appl. Phys. 107, 073506 (2010)

    Article  Google Scholar 

  23. Ridha, P., Li, H., Mexis, M., Smowton, P.M., Andrzejewski, J., Sek, G., Misiewicz, J., O’Reilly, E.P., Patriarchi, G., Fiore, A.: IEEE J. Quant. Electron. 46, 197 (2010)

    Article  CAS  Google Scholar 

  24. Kita, T., Wada, O., Ebe, H., Nakata, Y., Sugawara, M.: Jpn. J. Appl. Phys. 41, L1143 (2002)

    Article  CAS  Google Scholar 

  25. Kita, T., Tamura, N., Wada, O., Sugawara, M., Nakata, Y., Ebe, H., Arakawa, Y.: Appl. Phys. Lett. 88, 211106 (2006)

    Article  Google Scholar 

  26. Inoue, T., Asada, M., Kojima, O., Kita, T., Wada, O.: Proc. SPIE 7597, 75971J (2010)

    Article  Google Scholar 

  27. Inoue, T., Asada, M., Yasuoka, N., Kita, T., Wada, O.: J. Phys. Conf. Ser. 245, 0120761 (2010)

    Article  Google Scholar 

  28. Ikeuchi, Y., Inoue, T., Asada, M., Harada, Y., Kita, T., Taguchi, E., Yasuda, H.: Appl. Phys. Express 4, 062001 (2011)

    Article  Google Scholar 

  29. Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P.: Phys. Rev. Lett. 75, 2542 (1995)

    Article  CAS  Google Scholar 

  30. Klimeck, G., Ahmed, S., Hansang, B., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T., Rahman, R.: IEEE Trans. Elect. Dev. 54, 2079 (2007)

    Article  CAS  Google Scholar 

  31. Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.: IEEE Trans. Elect. Dev. 54, 2090 (2007)

    Article  CAS  Google Scholar 

  32. Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., Allmen, P.V.: Comput. Model. Eng. Sci. 3(5), 601 (2002)

    Google Scholar 

  33. Usman, M.: J. Appl. Phys. 110, 094512 (2011)

    Article  Google Scholar 

  34. Usman, M., Ryu, H., Woo, I., Ebert, D., Klimeck, G.: IEEE Trans. Nanotechnology 8(3), 330 (2009)

    Article  Google Scholar 

  35. Usman, M., Tan, Y., Ryu, H., Ahmed, S., Krenner, H., Boykin, T., Klimeck, G.: IOP Nanotechnology 22, 315709 (2011)

    Article  Google Scholar 

  36. Keating, P.N.: Phys. Rev. 145, 637 (1966)

    Article  CAS  Google Scholar 

  37. Lazarenkova, O.L., von Allmen, P., Oyafuso, F., Lee, S., Klimeck, G.: Appl. Phys. Lett. 85, 4193 (2004)

    Article  CAS  Google Scholar 

  38. Lee, S., Lazarenkova, O.L., von Allmen, P., Oyafuso, F., Klimeck, G.: Phys. Rev. B 70, 125307 (2004)

    Article  Google Scholar 

  39. Bester, G., Zunger, A.: Phys. Rev. B 72, 165334 (2005)

    Article  Google Scholar 

  40. Boykin, T., Klimeck, G., Bowen, R.C., Oyafuso, F.: Phys. Rev. B 66, 125207 (2002)

    Article  Google Scholar 

  41. Korkusinski, M., Klimeck, G.: J. Phys. Conf. Ser. 38, 75 (2006)

    Article  CAS  Google Scholar 

  42. Stier, O., Grundmann, M., Bimberg, D.: Phys. Rev. B 59, 5688 (1999 II)

    Google Scholar 

  43. Lin, Y.Y., Singh, J.: J. Appl. Phys. 92, 6205 (2002)

    Article  CAS  Google Scholar 

  44. Ikeuchi, Y., Inoue, T., Asada, M., Harada, Y., Kita, T., Taguchi, E., Yasuda, H.: Appl. Phys. Express 4, 062001 (2011)

    Article  Google Scholar 

  45. Ridha, P., Li, L., Rossetti, M., Patriarche, G., Fiore, A.: Opt. Quant. Electron. 40, 239 (2008)

    Article  CAS  Google Scholar 

  46. Sheng, W., Xu, S.: Phys. Rev. B 77, 113305 (2008)

    Article  Google Scholar 

  47. Alonso-Álvarez, D., Ripalda, J.M., Alén, B., Llorens, J.M., Rivera, A., Briones, F.: Adv. Mat. 23, 5256 (2011)

    Article  Google Scholar 

  48. Humlicek, J., Munzar, D., Navratil, K., Lorenc, M., Oswald, J., Pangrac, J., Hulicius, E.: Phys. E 13, 229 (2002)

    Article  CAS  Google Scholar 

  49. Mlinar, V., Zunger, A.: Phys. Rev. B 79, 115416 (2009)

    Article  Google Scholar 

  50. Dusanowski, L., Sek, G., Musiał, A., Podemski, P., Misiewicz, J., Löffler, A., Höfling, S., Reitzenstein, S., Forche, A.: J. Appl. Phys. 111, 063522 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

I am indebted to many colleagues with whom I have had the pleasure to work with, and in particular I wish to gratefully acknowledge Gerhard Klimeck (Purdue University USA), Takashi Kita (Kobe University Japan), Timothy B. Boykin (University of Alabama in Huntsville USA), Eoin P. O’Reilly (Tyndall National Institute Ireland), Stefan Schulz (Tyndall National Institute Ireland), and Shaikh S. Ahmed (Southern Illinois University USA). The use of computational resources from the National Science Foundation (NSF) funded Network for Computational Nanotechnology (NCN) through https://nanohub.org is acknowledged. The NEMO 3-D software package is developed by several researchers at Jet Propulsion Labs (JPL) and Purdue University under supervision of Prof. Gerhard Klimeck whom work has been cited in the corresponding references. The open source tools based on NEMO 3-D simulator are available at https://nanohub.org/groups/nemo_3d_distribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Usman, M. (2014). Size-dependent Electronic and Polarization Properties of Multi-Layer InAs Quantum Dot Molecules. In: Wu, J., Wang, Z. (eds) Quantum Dot Molecules. Lecture Notes in Nanoscale Science and Technology, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8130-0_5

Download citation

Publish with us

Policies and ethics