Skip to main content

Chromosome Microarrays

  • Chapter
  • First Online:
Molecular Diagnostics

Abstract

Since the late 1960s, conventional G-banded karyotype analysis has been the gold standard for the detection of genetic etiologies in patients with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) due to its ability to interrogate the entire genome in a single assay. While chromosome studies have significant diagnostic utility, chromosomal variation smaller than 5–10 megabases (Mb) is often not visible. Whole genome chromosomal microarray (CMA) analysis has revolutionized the field of clinical cytogenetics due to the significantly increased whole genome resolution it provides. This increased resolution has allowed the definition of many new clinical syndromes and has provided vast improvements in the diagnostic yield (12–15 % versus ~4 %). As a result, CMA testing has now replaced chromosome analysis as the first-tier test in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    Article  PubMed  CAS  Google Scholar 

  2. Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20:207–11.

    Article  PubMed  CAS  Google Scholar 

  3. Snijders AM, Nowak N, Segraves R, et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001;29:263–4.

    Article  PubMed  CAS  Google Scholar 

  4. Ishkanian AS, Malloff CA, Watson SK, et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet. 2004;36:299–303.

    Article  PubMed  CAS  Google Scholar 

  5. Lu X, Shaw CA, Patel A, et al. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One. 2007;2:e327.

    Article  PubMed  Google Scholar 

  6. Shaffer LG, Kashork CD, Saleki R, et al. Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases. J Pediatr. 2006;149:98–102.

    Article  PubMed  CAS  Google Scholar 

  7. Wong A, Vallender EJ, Heretis K, et al. Diverse fates of paralogs following segmental duplication of telomeric genes. Genomics. 2004;84:239–47.

    Article  PubMed  CAS  Google Scholar 

  8. Aradhya S, Cherry AM. Array-based comparative genomic hybridization: clinical contexts for targeted and whole-genome designs. Genet Med. 2007;9:553–9.

    Article  PubMed  CAS  Google Scholar 

  9. Baldwin EL, Lee JY, Blake DM, et al. Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. Genet Med. 2008;10:415–29.

    Article  PubMed  CAS  Google Scholar 

  10. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.

    Article  PubMed  CAS  Google Scholar 

  11. Ravnan JB, Tepperberg JH, Papenhausen P, et al. Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet. 2006;43:478–89.

    Article  PubMed  CAS  Google Scholar 

  12. Ballif BC, Sulpizio SG, Lloyd RM, et al. The clinical utility of enhanced subtelomeric coverage in array CGH. Am J Med Genet A. 2007;143A:1850–7.

    Article  PubMed  Google Scholar 

  13. Bruno DL, Stark Z, Amor DJ, et al. Extending the scope of diagnostic chromosome analysis: detection of single gene defects using high-resolution SNP microarrays. Hum Mutat. 2011;32:1500–6.

    Article  PubMed  CAS  Google Scholar 

  14. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med. 2011;13:680–5.

    Article  PubMed  Google Scholar 

  15. Manning M, Hudgins L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12:742–5.

    Article  PubMed  CAS  Google Scholar 

  16. Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–51.

    Article  PubMed  CAS  Google Scholar 

  17. Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.

    Article  PubMed  CAS  Google Scholar 

  18. Tuzun E, Sharp AJ, Bailey JA, et al. Fine-scale structural variation of the human genome. Nat Genet. 2005;37:727–32.

    Article  PubMed  CAS  Google Scholar 

  19. Sharp AJ, Locke DP, McGrath SD, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77:78–88.

    Article  PubMed  CAS  Google Scholar 

  20. Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet. 2006;38:75–81.

    Article  PubMed  CAS  Google Scholar 

  21. Hinds DA, Kloek AP, Jen M, Chen X, Frazer KA. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet. 2006;38:82–5.

    Article  PubMed  CAS  Google Scholar 

  22. McCarroll SA, Hadnott TN, Perry GH, et al. Common deletion polymorphisms in the human genome. Nat Genet. 2006;38:86–92.

    Article  PubMed  CAS  Google Scholar 

  23. Freeman JL, Perry GH, Feuk L, et al. Copy number variation: new insights in genome diversity. Genome Res. 2006;16:949–61.

    Article  PubMed  CAS  Google Scholar 

  24. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.

    Article  PubMed  CAS  Google Scholar 

  25. Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318:420–6.

    Article  PubMed  CAS  Google Scholar 

  26. McCarroll SA, Kuruvilla FG, Korn JM, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet. 2008;40:1166–74.

    Article  PubMed  CAS  Google Scholar 

  27. Kidd JM, Cooper GM, Donahue WF, et al. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008;453:56–64.

    Article  PubMed  CAS  Google Scholar 

  28. Richards CS, Bale S, Bellissimo DB, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008;10:294–300.

    Article  PubMed  CAS  Google Scholar 

  29. Girirajan S, Eichler EE. Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet. 2010;19:R176–87.

    Article  PubMed  CAS  Google Scholar 

  30. South ST. Chromosomal structural rearrangements: detection and elucidation of mechanisms using cytogenomic technologies. Clin Lab Med. 2011;31:513–24. vii.

    Article  PubMed  Google Scholar 

  31. Firth HV, Richards SM, Bevan AP, et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet. 2009;84:524–33.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang J, Feuk L, Duggan GE, Khaja R, Scherer SW. Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet Genome Res. 2006;115:205–14.

    Article  PubMed  CAS  Google Scholar 

  33. Fujita PA, Rhead B, Zweig AS, et al. The UCSC genome browser database: update 2011. Nucleic Acids Res. 2011;39:D876–82.

    Article  PubMed  CAS  Google Scholar 

  34. Riggs ER, Church DM, Hanson K, et al. Towards an evidence-based process for the clinical interpretation of copy number variation. Clin Genet. 2012;81:403–12.

    Article  PubMed  CAS  Google Scholar 

  35. Kearney HM, Kearney JB, Conlin LK. Diagnostic implications of excessive homozygosity detected by SNP-based microarrays: consanguinity, uniparental disomy, and recessive single-gene mutations. Clin Lab Med. 2011;31:595–613. ix.

    Article  PubMed  Google Scholar 

  36. Engel E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet. 1980;6:137–43.

    Article  PubMed  CAS  Google Scholar 

  37. Spence JE, Perciaccante RG, Greig GM, et al. Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet. 1988;42:217–26.

    PubMed  CAS  Google Scholar 

  38. Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989;342:281–5.

    Article  PubMed  CAS  Google Scholar 

  39. Papenhausen P, Schwartz S, Risheg H, et al. UPD detection using homozygosity profiling with a SNP genotyping microarray. Am J Med Genet A. 2011;155A:757–68.

    PubMed  Google Scholar 

  40. Lapunzina P, Monk D. The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer. Biol Cell. 2011;103:303–17.

    Article  PubMed  Google Scholar 

  41. Kotzot D. Complex and segmental uniparental disomy (UPD): review and lessons from rare chromosomal complements. J Med Genet. 2001;38:497–507.

    Article  PubMed  CAS  Google Scholar 

  42. Robinson WP. Mechanisms leading to uniparental disomy and their clinical consequences. Bioessays. 2000;22:452–9.

    Article  PubMed  CAS  Google Scholar 

  43. Geneimprint. 2012. http://www.geneimprint.com/site/genes-by-species.Homo+sapiens. Accessed 10 Dec 2012.

  44. Kotzot D. Complex and segmental uniparental disomy updated. J Med Genet. 2008;45:545–56.

    Article  PubMed  CAS  Google Scholar 

  45. Yamazawa K, Ogata T, Ferguson-Smith AC. Uniparental disomy and human disease: an overview. Am J Med Genet C Semin Med Genet. 2010;154C:329–34.

    Article  PubMed  Google Scholar 

  46. Liehr T. Cytogenetic contribution to uniparental disomy (UPD). Mol Cytogenet. 2010;3:8.

    Article  PubMed  Google Scholar 

  47. Engel E. Uniparental disomy revisited: the first twelve years. Am J Med Genet. 1993;46:670–4.

    Article  PubMed  CAS  Google Scholar 

  48. Engel E. A fascination with chromosome rescue in uniparental disomy: Mendelian recessive outlaws and imprinting copyrights infringements. Eur J Hum Genet. 2006;14:1158–69.

    Article  PubMed  CAS  Google Scholar 

  49. Modell B, Darr A. Science and society: genetic counselling and customary consanguineous marriage. Nat Rev Genet. 2002;3:225–9.

    Article  PubMed  CAS  Google Scholar 

  50. Stoll C, Alembik Y, Dott B, Feingold J. Parental consanguinity as a cause of increased incidence of birth defects in a study of 131,760 consecutive births. Am J Med Genet. 1994;49:114–7.

    Article  PubMed  CAS  Google Scholar 

  51. Stoltenberg C, Magnus P, Skrondal A, Lie RT. Consanguinity and recurrence risk of birth defects: a population-based study. Am J Med Genet. 1999;82:423–8.

    Article  PubMed  CAS  Google Scholar 

  52. Schaaf CP, Scott DA, Wiszniewska J, Beaudet AL. Identification of incestuous parental relationships by SNP-based DNA microarrays. Lancet. 2011;377:555–6.

    Article  PubMed  CAS  Google Scholar 

  53. Sheffield VC, Nishimura DY, Stone EM. Novel approaches to linkage mapping. Curr Opin Genet Dev. 1995;5:335–41.

    Article  PubMed  CAS  Google Scholar 

  54. Lander ES, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 1987;236:1567–70.

    Article  PubMed  CAS  Google Scholar 

  55. Alkuraya FS. Homozygosity mapping: one more tool in the clinical geneticist’s toolbox. Genet Med. 2010;12:236–9.

    Article  PubMed  Google Scholar 

  56. Highsmith Jr WE, Burch LH, Zhou Z, et al. Identification of a splice site mutation (2789 +5 G > A) associated with small amounts of normal CFTR mRNA and mild cystic fibrosis. Hum Mutat. 1997;9:332–8.

    Article  PubMed  CAS  Google Scholar 

  57. Alkuraya FS. Autozygome decoded. Genet Med. 2010;12:765–71.

    Article  PubMed  Google Scholar 

  58. Genomic Oligoarray and SNP array evaluation tool v1.0. http://www.ccs.miami.edu/cgi-bin/ROH/ROH_analysis_tool.cgi. Accessed 10 Dec 2012.

  59. DiMauro S, Hirano M. Mitochondrial DNA Deletion Syndromes. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle, WA: University of Washington; 1993.

    Google Scholar 

  60. Chinault AC, Shaw CA, Brundage EK, Tang LY, Wong LJ. Application of dual-genome oligonucleotide array-based comparative genomic hybridization to the molecular diagnosis of mitochondrial DNA deletion and depletion syndromes. Genet Med. 2009;11:518–26.

    Article  PubMed  CAS  Google Scholar 

  61. Aradhya S, Lewis R, Bonaga T, et al. Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders. Genet Med. 2012;14:594–603.

    Article  PubMed  CAS  Google Scholar 

  62. Piluso G, Dionisi M, Del Vecchio BF, et al. Motor chip: a comparative genomic hybridization microarray for copy-number mutations in 245 neuromuscular disorders. Clin Chem. 2011;57:1584–96.

    Article  PubMed  CAS  Google Scholar 

  63. Boone PM, Bacino CA, Shaw CA, et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010;31:1326–42.

    Article  PubMed  Google Scholar 

  64. Wong LJ, Dimmock D, Geraghty MT, et al. Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions. Clin Chem. 2008;54:1141–8.

    Article  PubMed  CAS  Google Scholar 

  65. Saillour Y, Cossee M, Leturcq F, et al. Detection of exonic copy-number changes using a highly efficient oligonucleotide-based comparative genomic hybridization-array method. Hum Mutat. 2008;29:1083–90.

    Article  PubMed  CAS  Google Scholar 

  66. del Gaudio D, Yang Y, Boggs BA, et al. Molecular diagnosis of Duchenne/Becker muscular dystrophy: enhanced detection of dystrophin gene rearrangements by oligonucleotide array-comparative genomic hybridization. Hum Mutat. 2008;29:1100–7.

    Article  PubMed  Google Scholar 

  67. Lejeune J, Gauthier M, Turpin R. Human chromosomes in tissue cultures. C R Hebd Seances Acad Sci. 1959;248:602–3.

    PubMed  CAS  Google Scholar 

  68. Phelan MC, Rogers RC, Saul RA, et al. 22q13 deletion syndrome. Am J Med Genet. 2001;101:91–9.

    Article  PubMed  CAS  Google Scholar 

  69. Mefford HC, Sharp AJ, Baker C, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008;359:1685–99.

    Article  PubMed  CAS  Google Scholar 

  70. Brunetti-Pierri N, Berg JS, Scaglia F, et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008;40:1466–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Thorland Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aypar, U., Aradhya, S., Kearney, H., Martin, C., South, S., Thorland, E.C. (2014). Chromosome Microarrays. In: Highsmith, Jr., W. (eds) Molecular Diagnostics. Molecular and Translational Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8127-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8127-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8126-3

  • Online ISBN: 978-1-4614-8127-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics