Skip to main content

Integrating Data-Driven and Mechanistic Models of the Inflammatory Response in Sepsis and Trauma

  • Chapter
  • First Online:
Complex Systems and Computational Biology Approaches to Acute Inflammation

Abstract

Inflammation can drive both homeostasis and disease via dynamic, multiscale processes. The inflammatory response can be studied using multiplexed platforms, but there is no straightforward means by which to deal with the consequent “data deluge” in order to glean basic insights and clinically useful applications. Systems approaches, including data-driven and mechanistic computational modeling, have been employed in order to study the acute inflammatory response in the settings of trauma/hemorrhage and sepsis. Through combined data-driven and mechanistic modeling based on such “meso-dimensional” datasets, computational models of acute inflammation applicable to multiple preclinical species as well as humans were generated. A key hypothesis derived from these studies is that inflammation may be regulated via positive feedback loops that control switching between beneficial and detrimental inflammatory responses. Self-resolving inflammation may occur when specific signals feedback in a positive fashion to drive anti-inflammatory responses, while proinflammatory signals remain below certain thresholds. In contrast, self-amplifying, detrimental inflammation may occur when different signals feedback in a positive fashion to drive proinflammatory responses, setting in motion the positive feedback loop of inflammation → tissue damage/dysfunction → inflammation driven by damage-associated molecular pattern molecules. These insights may drive a future generation of targeted, personalized therapies for acute inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203): 428–435

    Article  PubMed  CAS  Google Scholar 

  2. Namas R, Zamora R, Namas R, An G, Doyle J, Dick TE et al (2012) Sepsis: something old, something new, and a systems view. J Crit Care 27:314.e1–314.e11

    Article  Google Scholar 

  3. Namas R, Ghuma A, Hermus L, Zamora R, Okonkwo DO, Billiar TR et al (2009) The acute inflammatory response in trauma/hemorrhage and traumatic brain injury: current state and emerging prospects. Libyan J Med 4:136–148

    Article  Google Scholar 

  4. Marshall JC (2001) Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29(7 Suppl):S99–S106

    Article  PubMed  CAS  Google Scholar 

  5. Jarrar D, Chaudry IH, Wang P (1999) Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (Review). Int J Mol Med 4(6):575–583

    PubMed  CAS  Google Scholar 

  6. Vodovotz Y, Csete M, Bartels J, Chang S, An G (2008) Translational systems biology of inflammation. PLoS Comput Biol 4:1–6

    Article  Google Scholar 

  7. Vodovotz Y, An G (2009) Systems biology and inflammation. In: Yan Q (ed) Systems biology in drug discovery and development: methods and protocols. Springer, Totowa, NJ, pp 181–201

    Google Scholar 

  8. Vodovotz Y (2010) Translational systems biology of inflammation and healing. Wound Repair Regen 18(1):3–7

    Article  PubMed  Google Scholar 

  9. Waxman K (1996) Shock: ischemia, reperfusion, and inflammation. New Horiz 4(2):153–160

    PubMed  CAS  Google Scholar 

  10. Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Udekwu AO, Simmons RL (1995) Hemorrhagic shock. Curr Probl Surg 32(11):925–1002

    Article  PubMed  CAS  Google Scholar 

  11. Namas R, Ghuma A, Torres A, Polanco P, Gomez H, Barclay D et al (2009) An adequately robust early TNF-a response is a hallmark of survival following trauma/hemorrhage. PLoS One 4(12):e8406

    Article  PubMed  Google Scholar 

  12. Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852

    Article  PubMed  CAS  Google Scholar 

  13. Mi Q, Constantine G, Ziraldo C, Solovyev A, Torres A, Namas R et al (2011) A dynamic view of trauma/hemorrhage-induced inflammation in mice: principal drivers and networks. PLoS One 6:e19424

    Article  PubMed  CAS  Google Scholar 

  14. Chow CC, Clermont G, Kumar R, Lagoa C, Tawadrous Z, Gallo D et al (2005) The acute inflammatory response in diverse shock states. Shock 24:74–84

    Article  PubMed  CAS  Google Scholar 

  15. Lagoa CE, Bartels J, Baratt A, Tseng G, Clermont G, Fink MP et al (2006) The role of initial trauma in the host’s response to injury and hemorrhage: insights from a comparison of mathematical simulations and hepatic transcriptomic analysis. Shock 26:592–600

    Article  PubMed  CAS  Google Scholar 

  16. Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Bard Ermentrout G (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242(1):220–236

    Article  PubMed  CAS  Google Scholar 

  17. Torres A, Bentley T, Bartels J, Sarkar J, Barclay D, Namas R et al (2009) Mathematical modeling of post-hemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock 32(2):172–178

    Article  PubMed  Google Scholar 

  18. Mi Q, Li NYK, Ziraldo C, Ghuma A, Mikheev M, Squires R et al (2010) Translational systems biology of inflammation: potential applications to personalized medicine. Per Med 7:549–559

    Article  PubMed  Google Scholar 

  19. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  PubMed  CAS  Google Scholar 

  20. Jones AL, Selby P (1989) Tumour necrosis factor: clinical relevance. Cancer Surv 8(4):817–836

    PubMed  CAS  Google Scholar 

  21. Cavaillon JM (1994) Cytokines and macrophages. Biomed Pharmacother 48(10):445–453

    Article  PubMed  CAS  Google Scholar 

  22. Kox WJ, Volk T, Kox SN, Volk HD (2000) Immunomodulatory therapies in sepsis. Intensive Care Med 26(Suppl 1):S124–S128

    Article  PubMed  Google Scholar 

  23. Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    Article  PubMed  CAS  Google Scholar 

  24. Pinsky MR (2001) Sepsis: a pro- and anti-inflammatory disequilibrium syndrome. Contrib Nephrol 132:354–366

    Article  PubMed  CAS  Google Scholar 

  25. Baugh JA, Bucala R (2001) Mechanisms for modulating TNF alpha in immune and inflammatory disease. Curr Opin Drug Discov Devel 4(5):635–650

    PubMed  CAS  Google Scholar 

  26. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296(5573):1634–1635

    Article  PubMed  CAS  Google Scholar 

  27. An G, Nieman G, Vodovotz Y (2012) Computational and systems biology in trauma and sepsis: current state and future perspectives. Int J Burns Trauma 2:1–10

    PubMed  Google Scholar 

  28. An G, Nieman G, Vodovotz Y (2012) Toward computational identification of multiscale tipping points in multiple organ failure. Ann Biomed Eng 40(11):2414–2424

    Article  PubMed  Google Scholar 

  29. Dick TE, Molkov Y, Nieman G, Hsieh Y, Jacono FJ, Doyle J et al (2012) Linking inflammation and cardiorespiratory variability in sepsis via computational modeling. Front Physiol 3:222

    Article  PubMed  Google Scholar 

  30. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  PubMed  CAS  Google Scholar 

  31. Mesarovic MD, Sreenath SN, Keene JD (2004) Search for organising principles: understanding in systems biology. Syst Biol (Stevenage) 1(1):19–27

    Article  CAS  Google Scholar 

  32. Janes KA, Yaffe MB (2006) Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 7(11):820–828

    Article  PubMed  CAS  Google Scholar 

  33. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  PubMed  CAS  Google Scholar 

  34. Arkin AP, Schaffer DV (2011) Network news: innovations in 21st century systems biology. Cell 144(6):844–849

    Article  PubMed  CAS  Google Scholar 

  35. Day J, Rubin J, Vodovotz Y, Chow CC, Reynolds A, Clermont G (2006) A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. J Theor Biol 242(1):237–256

    Article  PubMed  CAS  Google Scholar 

  36. Prince JM, Levy RM, Bartels J, Baratt A, Kane JM III, Lagoa C et al (2006) In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol Med 12(4–6):88–96

    PubMed  CAS  Google Scholar 

  37. Kumar R, Chow CC, Bartels JD, Clermont G, Vodovotz Y (2008) A mathematical simulation of the inflammatory response to anthrax infection. Shock 29(1):104–111

    PubMed  Google Scholar 

  38. Constantine G, Buliga M, Vodovotz Y, Bohnen N, Clermont G (2010) Time varying patterns of organ failure. Int J Contemp Math Sci 5:2263–2272

    Google Scholar 

  39. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between GÇô and reconciliation of GÇô GÇÿpredictiveGÇÖ and GÇÿexplanatoryGÇÖ models. Biodivers Conserv 9(5):655–671

    Article  Google Scholar 

  40. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C, Barrette TR, Shankar-Sinha S, Sarma VJ et al (2001) Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am J Pathol 159(4):1199–1209

    Article  PubMed  CAS  Google Scholar 

  41. Yu SL, Chen HW, Yang PC, Peck K, Tsai MH, Chen JJ et al (2004) Differential gene expression in gram-negative and gram-positive sepsis. Am J Respir Crit Care Med 169(10):1135–1143

    Article  PubMed  Google Scholar 

  42. Brownstein BH, Logvinenko T, Lederer JA, Cobb JP, Hubbard WJ, Chaudry IH et al (2006) Commonality and differences in leukocyte gene expression patterns among three models of inflammation and injury. Physiol Genomics 24(3):298–309

    PubMed  CAS  Google Scholar 

  43. Edmonds RD, Vodovotz Y, Lagoa C, Dutta-Moscato J, Ching Y, Fink MP et al (2011) Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual platform microarray analysis. Physiol Genomics 43:1170–1183

    Article  PubMed  CAS  Google Scholar 

  44. Prucha M, Ruryk A, Boriss H, Moller E, Zazula R, Herold I et al (2004) Expression profiling: toward an application in sepsis diagnostics. Shock 22(1):29–33

    Article  PubMed  CAS  Google Scholar 

  45. Pachot A, Lepape A, Vey S, Bienvenu J, Mougin B, Monneret G (2006) Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study. Immunol Lett 106(1):63–71

    Article  PubMed  CAS  Google Scholar 

  46. Shanley TP, Cvijanovich N, Lin R, Allen GL, Thomas NJ, Doctor A et al (2007) Genome-level longitudinal expression of signaling pathways and gene networks in pediatric septic shock. Mol Med 13(9–10):495–508

    PubMed  CAS  Google Scholar 

  47. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  PubMed  CAS  Google Scholar 

  48. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H et al (2011) A genomic storm in critically injured humans. J Exp Med 208(13):2581–2590

    Article  PubMed  CAS  Google Scholar 

  49. Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA, Sorger PK (2006) The response of human epithelial cells to TNF Involves an inducible autocrine cascade. Cell 124(6):1225–1239

    Article  PubMed  CAS  Google Scholar 

  50. Namas R, Namas R, Lagoa C, Barclay D, Mi Q, Zamora R et al (2012) Hemoadsorption reprograms inflammation in experimental gram-negative septic fibrin peritonitis: insights from in vivo and in silico studies. Mol Med 18:1366–1374

    Article  PubMed  CAS  Google Scholar 

  51. Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J et al (2010) Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol 32(2):181–195

    Article  PubMed  Google Scholar 

  52. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8(2):101–105

    Article  PubMed  Google Scholar 

  53. Kunkel SL, Strieter RM (1990) Cytokine networking in lung inflammation. Hosp Pract (Off Ed) 25(10):63–66

    CAS  Google Scholar 

  54. Elias JA, Freundlich B, Kern JA, Rosenbloom J (1990) Cytokine networks in the regulation of inflammation and fibrosis in the lung. Chest 97(6):1439–1445

    Article  PubMed  CAS  Google Scholar 

  55. Miossec P (2004) An update on the cytokine network in rheumatoid arthritis. Curr Opin Rheumatol 16(3):218–222

    Article  PubMed  CAS  Google Scholar 

  56. Stavitsky AB (2007) The innate immune response to infection, toxins and trauma evolved into networks of interactive, defensive, reparative, regulatory, injurious and pathogenic pathways. Mol Immunol 44(11):2787–2799

    Article  PubMed  CAS  Google Scholar 

  57. Vasto S, Candore G, Balistreri CR, Caruso M, Colonna-Romano G, Grimaldi MP et al (2007) Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev 128(1):83–91

    Article  PubMed  CAS  Google Scholar 

  58. Foteinou PT, Yang E, Androulakis IP (2009) Networks, biology and systems engineering: a case study in inflammation. Comput Chem Eng 33(12):2028–2041

    Article  PubMed  CAS  Google Scholar 

  59. Alexopoulos LG, Saez-Rodriguez J, Cosgrove BD, Lauffenburger DA, Sorger PK (2010) Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol Cell Proteomics 9(9):1849–1865

    Article  PubMed  CAS  Google Scholar 

  60. Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17):2271–2282

    Article  PubMed  CAS  Google Scholar 

  61. Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng 16(11):1370–1386

    Article  Google Scholar 

  62. Shah A, Tenzen T, McMahon AP, Woolf PJ (2009) Using mechanistic Bayesian networks to identify downstream targets of the sonic hedgehog pathway. BMC Bioinformatics 10:433

    Article  PubMed  Google Scholar 

  63. Rawool SB, Venkatesh KV (2007) Steady state approach to model gene regulatory networks-simulation of microarray experiments. Biosystems 90(3):636–655

    Article  PubMed  CAS  Google Scholar 

  64. Cochran JB, Losek JD (2007) Acute liver failure in children. Pediatr Emerg Care 23(2):129–135

    Article  PubMed  Google Scholar 

  65. D’Agostino D, Diaz S, Sanchez MC, Boldrini G (2012) Management and prognosis of acute liver failure in children. Curr Gastroenterol Rep 14(3):262–269

    Article  PubMed  Google Scholar 

  66. Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 101(7):1822–1827

    Article  PubMed  CAS  Google Scholar 

  67. Clermont G, Chow CC, Kumar R, Vodovotz Y (2001) Mathematical simulation of the innate immune response. CCM 29(12 Suppl):A111

    Google Scholar 

  68. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys J 90(5):1546–1559

    Article  PubMed  CAS  Google Scholar 

  69. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  PubMed  Google Scholar 

  70. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295(5560):1664–1669

    Article  PubMed  CAS  Google Scholar 

  71. Kurata H, El-Samad H, Iwasaki R, Ohtake H, Doyle JC, Grigorova I et al (2006) Module-based analysis of robustness tradeoffs in the heat shock response system. PLoS Comput Biol 2(7):e59

    Article  PubMed  Google Scholar 

  72. An G, Hunt CA, Clermont G, Neugebauer E, Vodovotz Y (2007) Challenges and rewards on the road to translational systems biology in acute illness: four case reports from interdisciplinary teams. J Crit Care 22:169–175

    Article  PubMed  Google Scholar 

  73. An G, Faeder J, Vodovotz Y (2008) Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J Burn Care Res 29:277–285

    Article  PubMed  Google Scholar 

  74. An G (2004) In-silico experiments of existing and hypothetical cytokine-directed clinical trials using agent based modeling. Crit Care Med 32:2050–2060

    Article  PubMed  CAS  Google Scholar 

  75. Kumar R, Clermont G, Vodovotz Y, Chow CC (2004) The dynamics of acute inflammation. J Theor Biol 230:145–155

    Article  PubMed  CAS  Google Scholar 

  76. Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y, Chow C (2004) In silico design of clinical trials: a method coming of age. Crit Care Med 32:2061–2070

    Article  PubMed  Google Scholar 

  77. Daun S, Rubin J, Vodovotz Y, Roy A, Parker R, Clermont G (2008) An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J Theor Biol 253:843–853

    Article  PubMed  CAS  Google Scholar 

  78. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2009) Modeling endotoxin-induced systemic inflammation using an indirect response approach. Math Biosci 217:27–42

    Article  PubMed  CAS  Google Scholar 

  79. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2009) In silico simulation of corticosteroids effect on an NFkB- dependent physicochemical model of systemic inflammation. PLoS One 4(3):e4706

    Article  PubMed  Google Scholar 

  80. An G, Faeder JR (2009) Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 217:53–63

    Article  PubMed  CAS  Google Scholar 

  81. An G (2009) A model of TLR4 signaling and tolerance using a qualitative, particle event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 217:43–52

    Article  PubMed  CAS  Google Scholar 

  82. Rivière B, Epshteyn Y, Swigon D, Vodovotz Y (2009) A simple mathematical model of signaling resulting from the binding of lipopolysaccharide with Toll-like receptor 4 demonstrates inherent preconditioning behavior. Math Biosci 217:19–26

    Article  PubMed  Google Scholar 

  83. Nieman K, Brown D, Sarkar J, Kubiak B, Ziraldo C, Vieau C et al (2012) A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine. Crit Care Med 40:1052–1063

    Article  PubMed  Google Scholar 

  84. Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2010) Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS One 5(2):e9249

    Article  PubMed  Google Scholar 

  85. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2010) Multiscale model for the assessment of autonomic dysfunction in human endotoxemia. Physiol Genomics 42(1):5–19

    Article  PubMed  CAS  Google Scholar 

  86. Scheff JD, Calvano SE, Lowry SF, Androulakis IP (2010) Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol 264(3):1068–1076

    Article  PubMed  Google Scholar 

  87. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2011) A physiological model for autonomic heart rate regulation in human endotoxemia. Shock 35(3):229–239

    Article  PubMed  Google Scholar 

  88. Yang Q, Calvano SE, Lowry SF, Androulakis IP (2011) A dual negative regulation model of toll-like receptor 4 signaling for endotoxin preconditioning in human endotoxemia. Math Biosci 232(2):151–163

    Article  PubMed  CAS  Google Scholar 

  89. Arciero J, Rubin J, Upperman J, Vodovotz Y, Ermentrout GB (2010) Using a mathematical model to analyze the role of probiotics and inflammation in necrotizing enterocolitis. PLoS One 5:e10066

    Article  PubMed  Google Scholar 

  90. Kim M, Christley S, Alverdy JC, Liu D, An G (2012) Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect (Larchmt) 13(1):18–32

    Article  Google Scholar 

  91. Koch-Nolte F, Fischer S, Haag F, Ziegler M (2011) Compartmentation of NAD+-dependent signalling. FEBS Lett 585(11):1651–1656

    Article  PubMed  CAS  Google Scholar 

  92. Zamora R, Azhar N, Namas R, Metukuri MR, Clermont T, Gladstone C et al (2012) Identification of a novel pathway of TGF-beta1 regulation by extracellular NAD+ in mouse macrophages: in vitro and in silico studies. J Biol Chem 287:31003–31014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health grants R01GM67240, P50GM53789, R33HL089082, R01HL080926, R01AI080799, R01HL76157, R01DC008290, and UO1 DK072146; National Institute on Disability and Rehabilitation Research grant H133E070024; a Shared University Research Award from IBM, Inc.; and grants from the Commonwealth of Pennsylvania, the Pittsburgh Life Sciences Greenhouse, and the Pittsburgh Tissue Engineering Initiative/Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Vodovotz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Azhar, N., Mi, Q., Ziraldo, C., Buliga, M., Constantine, G.M., Vodovotz, Y. (2013). Integrating Data-Driven and Mechanistic Models of the Inflammatory Response in Sepsis and Trauma. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8008-2_8

Download citation

Publish with us

Policies and ethics