Skip to main content

Abstract

Wounds can arise either from a disease process or are surgically created as part of therapy. The healing of damaged tissue is a fundamental biological process, involving a complex set of cellular and molecular components acting within a specific spatial context. Impairment or aberration of the wound healing process is a considerable source of morbidity and mortality, likely only to increase in clinical significance given an aging population. Despite considerable advances in the mechanistic knowledge of wound healing, as with all complex biological processes converting that knowledge into effective therapeutics is a substantial translational challenge. As result, wound healing has been a major focus in the field of Translational Systems Biology, and, in particular, been a subject of agent-based mechanistic computational modeling. The intuitive mapping between biological knowledge and the rules in an agent-based model (ABM), the ability of an ABM to readily represent stochastic processes, and the inherent spatial representation capability of an ABM all facilitate the utilization of this method in the practice of Translational Systems Biology. Presented herein are a series of ABMs of wound healing that demonstrate the translational potential and utility of this methodology in advancing the rational development of wound healing therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771

    Article  PubMed  Google Scholar 

  2. Dorsett-Martin WA (2004) Rat models of skin wound healing: a review. Wound Repair Regen 12:591–599

    Article  PubMed  Google Scholar 

  3. Lindblad WJ (2008) Considerations for selecting the correct animal model for dermal wound-healing studies. J Biomater Sci Polym Ed 19:1087–1096

    Article  PubMed  CAS  Google Scholar 

  4. Broughton G, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S–34S

    Article  PubMed  CAS  Google Scholar 

  5. Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Sarkar J, Squires R, Okonkwo DO, Gerlach J, Zamora R, Luckhart S, Ermentrout B, An G (2010) Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol 32:181–195

    Article  PubMed  Google Scholar 

  6. Epstein FH, Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  Google Scholar 

  7. Mammen JMV, Matthews JB (2003) Mucosal repair in the gastrointestinal tract. Crit Care Med 31:S532–S537

    Article  PubMed  Google Scholar 

  8. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  CAS  Google Scholar 

  9. Vodovotz Y, Constantine G, Rubin J, Csete M, Voit EO, An G (2009) Mechanistic simulations of inflammation: current state and future prospects. Math Biosci 217:1–10

    Article  PubMed  Google Scholar 

  10. Nathan C, Sporn M (1991) Cytokines in context. J Cell Biol 113:981–986

    Article  PubMed  CAS  Google Scholar 

  11. Gallucci RM, Simeonova PP, Matheson JM, Kommineni C, Guriel JL, Sugawara T, Luster MI (2000) Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB J 14:2525–2531

    Article  PubMed  CAS  Google Scholar 

  12. Ohshima T, Sato Y (1998) Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality. Int J Legal Med 111:251–255

    Article  PubMed  CAS  Google Scholar 

  13. Roberts AB, Sporn MB (1996) Transforming growth factor-b. In: Clark RAF (ed) The molecular and cellular biology of wound repair. Plenum, New York

    Google Scholar 

  14. Efron DT, Most D, Barbul A (2000) Role of nitric oxide in wound healing. Curr Opin Clin Nutr Metab Care 3:197–204

    Article  PubMed  CAS  Google Scholar 

  15. Schwentker A, Vodovotz Y, Weller R, Billiar TR (2002) Nitric oxide and wound repair: role of cytokines? Nitric Oxide 7:1–10

    Article  PubMed  CAS  Google Scholar 

  16. Waugh HV, Sherratt JA (2006) Macrophage dynamics in diabetic wound dealing. Bull Math Biol 68:197–207

    Article  PubMed  CAS  Google Scholar 

  17. Waugh HV, Sherratt JA (2007) Modeling the effects of treating diabetic wounds with engineered skin substitutes. Wound Repair Regen 15:556–565

    Article  PubMed  Google Scholar 

  18. Arciero JC, Mi Q, Branca MF, Hackam DJ, Swigon D (2011) Continuum model of collective cell migration in wound healing and colony expansion. Biophys J 100:535–543

    Article  PubMed  CAS  Google Scholar 

  19. Wearing HJ, Sherratt JA (2000) Keratinocyte growth factor signalling: a mathematical model of dermal-epidermal interaction in epidermal wound healing. Math Biosci 165:41–62

    Article  PubMed  CAS  Google Scholar 

  20. McDougall S, Dallon J, Sherratt J, Maini P (2006) Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans A Math Phys Eng Sci 364:1385–1405

    Article  PubMed  CAS  Google Scholar 

  21. Sherratt JA, Dallon JC (2002) Theoretical models of wound healing: past successes and future challenges. C R Biol 325:557–564

    Article  PubMed  Google Scholar 

  22. An G (2009) Dynamic knowledge representation using agent based modeling: ontology instantiation and verification of conceptual models. Methods Mol Biol 500:445–468

    Article  PubMed  CAS  Google Scholar 

  23. An G, Faeder J, Vodovotz Y (2008) Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J Burn Care Res 29:277–285

    Article  PubMed  Google Scholar 

  24. Hunt CA, Ropella GE, Tn L, Gewitz AD (2011) Relational grounding facilitates development of scientifically useful multiscale models. Theor Biol Med Model 8:35

    Article  PubMed  Google Scholar 

  25. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2009) Translational potential of systems-based models of inflammation. Clin Transl Sci 2:85–89

    Article  PubMed  CAS  Google Scholar 

  26. An G (2010) Closing the scientific loop: bridging correlation and causality in the petaflop age. Sci Transl Med 2:41ps34

    Article  PubMed  Google Scholar 

  27. Wilensky U NetLogo (1999) Northwestern University Center for Connected Learning and Computer-Based Modeling, Evanston, IL

    Google Scholar 

  28. North MJ, Collier NT, Vos JR (2006) Experiences creating three implementations of the repast agent modeling toolkit. ACM Trans Model Compu Simulat (TOMACS) 16:1–25

    Article  Google Scholar 

  29. Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G (2005) MASON: a multi-agent simulation environment. Simulation 82(7):517–527

    Google Scholar 

  30. Solovyev A, Mikheev M, Zhou L, Dutta-Moscato J, Ziraldo C, An G, Vodovotz,Y Mi Q (2010) SPARK: A framework for multi-scale agent-based biomedical modeling. Int J Agent Technol Syst 2:18–30

    Article  Google Scholar 

  31. Solovyev A, Mikheev M, Zhou L, Dutta-Moscato J, Ziraldo C, An G, Vodovotz Y, Mi Q, SPARK. A framework for multi-scale agent-based biomedical modeling. Int. J. Agent Technologies and Systems. 2010

    Google Scholar 

  32. Christley S, Lee B, Dai X, Nie Q (2010) Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms. BMC Syst Biol 4:107

    Article  PubMed  Google Scholar 

  33. Stern JR, Christley S, Zaborina O, Alverdy JC, An G (2012) Integration of TGF-beta- and EGFR-based signaling pathways using an agent-based model of epithelial restitution. Wound Repair Regen 20:862–863

    Article  PubMed  Google Scholar 

  34. Walker DC, Georgopoulos NT, Southgate J (2008) From pathway to population – a multiscale model of juxtacrine EGFR-MAPK signalling. BMC Syst Biol 2:102

    Article  PubMed  CAS  Google Scholar 

  35. Walker DC, Hill G, Wood SM, Smallwood RH, Southgate J (2004) Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Trans Nanobioscience 3:153–163

    Article  PubMed  CAS  Google Scholar 

  36. An GC (2010) Translational systems biology using an agent-based approach for dynamic knowledge representation: an evolutionary paradigm for biomedical research. Wound Repair Regen 18:8–12

    Article  PubMed  Google Scholar 

  37. Li NYK, Verdolini K, Clermont G, Mi Q, Hebda PA, Vodovotz Y (2008) A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS One 3:e2789

    Article  PubMed  Google Scholar 

  38. Li NYK, Vodovotz Y, Hebda PA, Verdolini K (2010) Biosimulation of inflammation and healing in surgically injured vocal folds. Ann Otol Rhinol Laryngol 119:412–423

    PubMed  Google Scholar 

  39. Li NYK, Vodovotz Y, Kim KH, Mi Q, Hebda PA, Verdolini Abbott K (2011) Biosimulation of acute phonotrauma: an extended model. Laryngoscope 121:2418–2428

    Article  PubMed  Google Scholar 

  40. Mi Q, Rivière B, Clermont G, Steed DL, Vodovotz Y (2007) Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-b1. Wound Repair Regen 15:617–682

    Article  Google Scholar 

  41. Vodovotz Y, Csete M, Bartels J, Chang S, An G (2008) Translational systems biology of inflammation. PLoS Comput Biol 4:1–6

    Article  Google Scholar 

  42. Podolsky DK (1999) Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol 277:G495–G499

    PubMed  CAS  Google Scholar 

  43. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  PubMed  CAS  Google Scholar 

  44. Dise RS, Frey MR, Whitehead RH, Polk DB (2008) Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 294:G276–G285

    Article  PubMed  CAS  Google Scholar 

  45. Kheradmand F, Folkesson HG, Shum L, Derynk R, Pytela R, Matthay MA (1994) Transforming growth factor-alpha enhances alveolar epithelial cell repair in a new in vitro model. Am J Physiol Lung Cell Mol Physiol 267:L728–L738

    CAS  Google Scholar 

  46. Block ER, Matela AR, SundarRaj N, Iszkula ER, Klarlund JK (2004) Wounding induces motility in sheets of corneal epithelial cells through loss of spatial constraints. J Biol Chem 279:24307–24312

    Article  PubMed  CAS  Google Scholar 

  47. Garber SL, Rintala DH, Hart KA, Fuhrer MJ (2000) Pressure ulcer risk in spinal cord injury: predictors of ulcer status over 3 years. Arch Phys Med Rehabil 81:465–471

    Article  PubMed  CAS  Google Scholar 

  48. Peirce SM, Skalak TC, Rodeheaver GT (2000) Ischemia-reperfusion injury in chronic pressure ulcer formation: a skin model in the rat. Wound Repair Regen 8:68–76

    Article  PubMed  CAS  Google Scholar 

  49. Robson MC, Steed DL, Franz MG (2001) Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg 38:72–140

    Article  PubMed  CAS  Google Scholar 

  50. Mi Q, Solovyev A, Zhou L, Mikheev M, Dutta-Moscato J, An G, Vodovotz Y (2009) A computer simulation of pressure ulcer formation following spinal cord injury: an application of a novel agent-based biomedical modeling framework. In: Proceedings of RESNA 2009 annual conference

    Google Scholar 

  51. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  PubMed  CAS  Google Scholar 

  52. Keller P, Wille J, van Ramshorst B, van der Werken C (2002) Pressure ulcers in intensive care patients: a review of risks and prevention. Intensive Care Med 28:1379–1388

    Article  PubMed  Google Scholar 

  53. Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29:139–162

    Article  PubMed  CAS  Google Scholar 

  54. Yang H, Tracey KJ (2010) Targeting HMGB1 in inflammation. Biochim Biophys Acta 1799:149–156

    Article  PubMed  CAS  Google Scholar 

  55. Zhu S, Li W, Ward MF, Sama AE, Wang H (2010) High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets 9:60–72

    Article  PubMed  Google Scholar 

  56. An G, Bartels J, Vodovotz Y (2011) In silico augmentation of the drug development pipeline: examples from the study of acute inflammation. Drug Dev Res 72:1–14

    Article  Google Scholar 

  57. Mi Q, Li NYK, Ziraldo C, Ghuma A, Mikheev M, Squires R, Okonkwo DO, Verdolini Abbott K, Constantine G, An G, Vodovotz Y (2010) Translational systems biology of inflammation: potential applications to personalized medicine. Per Med 7:549–559

    Article  PubMed  Google Scholar 

  58. Vodovotz Y (2010) Translational systems biology of inflammation and healing. Wound Repair Regen 18:3–7

    Article  PubMed  Google Scholar 

  59. Vodovotz Y, An G (2009) Systems biology and inflammation. In: Yan Q (ed) Systems biology in drug discovery and development: methods and protocols. Springer, Totowa, NJ

    Google Scholar 

  60. Guzman LA, Mick MJ, Arnold AM, Forudi F, Whitlow PL (1996) Role of intimal hyperplasia and arterial remodeling after balloon angioplasty: an experimental study in the atherosclerotic rabbit model. Arterioscler Thromb Vasc Biol 16:479–487

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, Holmes DR (1992) Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 19:267–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health grants R01GM67240, P50GM53789, R33HL089082, R01HL080926, R01AI080799, R01HL76157, R01DC008290, and UO1DK072146; National Institute on Disability and Rehabilitation Research grant H133E070024; National Science Foundation grant 0830-370-V601; a Shared University Research Award from IBM, Inc.; and grants from the Commonwealth of Pennsylvania, the Pittsburgh Life Sciences Greenhouse, and the Pittsburgh Tissue Engineering Initiative/Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan R. Stern M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stern, J.R., Ziraldo, C., Vodovotz, Y., An, G. (2013). Agent-Based Models of Wound Healing. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8008-2_12

Download citation

Publish with us

Policies and ethics