Skip to main content

Multiple-Active Multiple-Passive Antenna Systems and Applications

  • Chapter
  • First Online:
  • 1675 Accesses

Abstract

This chapter focuses on extensions and foreseen applications of the parasitic antenna array technology. Moving beyond the single-active (single-RF) communication setup, hitherto discussed in the previous chapters, the work in this chapter extends the analysis to generalized multiple-active multiple-passive (MAMP) antenna topologies, as explained in Sect. 8.1. Then, Sect. 8.2 proposes MAMP antenna structures with application to reconfigurable MIMO transmission in the presence of antenna mutual coupling under poor scattering channel conditions. For this purpose, the section presents an adaptive MAMP antenna system capable of changing its transmission parameters via passive radiators attached to tunable loads, according to the structure of the RF propagation channel. The hybrid MAMP array structure can be tractably analyzed using the active element response vector (instead of the classical steering vector) and the active element current vector (all being functions of the variable loading). The adaptive MAMP system targets at maximizing tight MIMO ergodic and outage rate bounds, relying on partial channel knowledge when tuning to a different loading state for optimizing the rate of communication. The proposed adaptive MAMP system can be limited to practical dimensions whereas the passive antennas require no extra RF hardware, thus meeting the cost, space, and power constrains of the users’ mobile terminals. The simulation results show that the adaptive MAMP system, thanks to its “adaptivity”, is able to achieve satisfactory performance even in poor scattering environments whereas a significant part of the mutual information that is lost owing to the spatial correlation and the electromagnetic coupling is successfully retrieved. Section 8.3 extends our communication scenario to account for multiuser diversity systems, describing novel parasitic antenna-assisted switched beam array architectures for enhanced selection combining with application to the downlink of cellular systems exploiting multiuser diversity. Specifically, this section deals with the problem of the poor performance of antenna selection for compact user terminals in multiuser diversity systems. Although antenna selection is a simple and efficient technique for enhancing the downlink performance of multiuser diversity systems, the large antenna inter-element spacing required for achieving spatial diversity is prohibitive for user terminals due to size restrictions. In order to allay this problem, miniaturized switched-beam MAMP receiver designs assisted by low-cost passive reflectors are proposed. Unlike conventional spatial receive diversity systems, the proposed angular diversity architectures occupy a small volume, whereas the antenna system properties are optimized by controlling the strong reactive fields present at small dimensions. The systems are designed for maximum antenna efficiency and low inter-beam correlation, thus yielding K practically uncorrelated receive diversity branches. The simulation results show that the proposed enhanced diversity combining systems improve the average throughput of a multiuser network outperforming classical antenna selection especially for small user populations and compact user terminal size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Z is the impedance matrix obtained when terminating the ports with the standard terminations (generally 50 Ohm terminations).

  2. 2.

    Other factors include the mutual interference among the parallel RF chains as well as the near-field losses raised by the user’s hand and head.

  3. 3.

    In the literature, A T is known as the signal covariance matrix, which need not be diagonal when applying baseband linear precoding across the transmit active antennas. In this work, A T is only optionally used for further optimizing the power distribution across the active element responses. Notice that baseband linear precoding can be added on top of the proposed nonlinear precoder, but requires further channel knowledge and is beyond the scope of this work.

  4. 4.

    Also, it is easy to see that the upper bound in (8.14) can be used under both transmit and receive correlation/coupling, whereas the upper bound in (8.15) can be used with single-sided (i.e., only transmit or only receive) correlation/coupling.

References

  1. E.P. Tsakalaki, Reduced-complexity wireless transceiver architectures and techniques for space-time communications, PhD Thesis, Aalborg University, 2012

    Google Scholar 

  2. S.J. Orphanides, Electromagnetic Waves and Antennas (Rutgers University, Newark, 2008)

    Google Scholar 

  3. L.Petit, L. Dussopt, J. Laheurte, MEMS-Switched parasitic-antenna array for radiation pattern diversity. IEEE Trans. Antenn. Propag. 54(9), 2624–2631 (2006)

    Article  Google Scholar 

  4. M.J. Gans, G.J. Foschini, Limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Commun. 6(3), 311–335 (1998)

    Article  Google Scholar 

  5. A.M. Tulino, A. Lozano, S. Verdu, Impact of antenna correlation on the capacity of multi-antenna channels. IEEE Trans. Inform. Theor. 51(7), 2491–2509 (2005)

    Article  MathSciNet  Google Scholar 

  6. A. Ranheim, T. Svantesson, Mutual coupling effects on the capacity of multielement antenna systems, in IEEE International Conferene on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, UT, 2001

    Google Scholar 

  7. J.W. Wallace, M.A. Jensen, Termination-dependent diversity performance of coupled antennas: network theory analysis. IEEE Trans. Antenn. Propag. 52(1), 98–105 (2004)

    Article  Google Scholar 

  8. Y. Ebine, Y. Yamada, T. Takahash, Study of vertical space diversity for land mobile radio. Electron. Comm. Jpn. 74(10), 68–76 (1991)

    Article  Google Scholar 

  9. B.K. Lau, S.M.S. Ow, G. Kristensson, A.F. Molisch, Capacity analysis for compact MIMO systems, in IEEE Vehicular Technology Conference (VTC), 1, 165–170 (2005)

    Google Scholar 

  10. M.A. Hein, R. Stephan, K. Blau, C. Volmer, J. Weber, Miniaturized antenna arrays using decoupling networks with realistic elements. IEEE Trans. Microw. Theor. Tech. 54(6), 2733–2740 (2006)

    Article  Google Scholar 

  11. A.F. Molisch, G. Kristensson, J.B. Andersen, B.K. Lau, Impact of matching network on bandwidth of compact antenna arrays. IEEE Trans. Antenn. Propag. 54(11), 3225–3238 (2006)

    Article  Google Scholar 

  12. Y. Fei, Y. Fan, B.K. Lau, J. Thompson, Optimal single-port matching impedance for capacity maximization in compact MIMO arrays. IEEE Trans. Antenn. Propag. 56(11), 3566–3575 (2008)

    Article  Google Scholar 

  13. E.P. Tsakalaki, O.N. Alrabadi, C.B. Papadias, R. Prasad, Adaptive reactance-controlled antenna systems for MIMO applications. IET Microw. Antenn. Propag. 5(8), 975–984 (2011)

    Article  Google Scholar 

  14. E.P. Tsakalaki, O.N. Alrabadi, C.B. Papadias, R. Prasad, An adaptive reactance-assisted antenna system for the MIMO uplink, in 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Athens, 2010

    Google Scholar 

  15. P. Bhartia, I.J. Bahl, A frequency agile microstrip antenna, in Antennas Propagation Society International Symposium, 20, 304–307 (1982)

    Google Scholar 

  16. O.N. Alrabadi, A. Kalis, C.B. Papadias, R. Prasad, A universal encoding scheme for MIMO transmission using a single active element for PSK modulation schemes. IEEE Trans. Wireless Commun. 8(10), 5133–5142 (2009)

    Article  Google Scholar 

  17. O. Rostbakken, G.S. Hilton, C.J. Railton, An adaptive microstrip patch antenna for use in portable transceivers, in IEEE Vehicular Technology Conference (VTC), Atlanta, GA, 1996

    Google Scholar 

  18. P.S. Hall, S.D. Kapoulas, R. Chauhan, C. Kalialakis, Microstrip patch antenna with integrated adaptive tuning, in 10th International Conference on Antennas and Propagation, Edinburgh, 1997

    Google Scholar 

  19. T. Ohira, K. Gyoda, Design of electronically steerable passive array radiator (ESPAR) antennas, in IEEE Antennas and Propagation Society International Symposium, Salt Lake City, UT, 2000

    Google Scholar 

  20. C. Sun, A. Hirata, T. Ohira, N. Karmakar, Fast beamforming of electronically steerable parasitic array radiator antennas: theory and experiment. IEEE Trans. Antenn. Propag. 52(7), 1819–1832 (2004)

    Article  Google Scholar 

  21. F. Schettino, D. Pinchera, M.D. Migliore, Improving channel capacity using adaptive MIMO antennas. IEEE Trans. Antenn. Propag. 54(11), 3481–3489 (2006)

    Article  Google Scholar 

  22. N. Honma, K. Nishimori, Y. Takatori, A. Ohta, S. Kubota, Proposal of compact MIMO terminal antenna employing Yagi-Uda array with common director elements, in IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, 2007

    Google Scholar 

  23. O.N. Alrabadi, C.B. Papadias, A. Kalis, N. Marchetti, R. Prasad, MIMO transmission and reception techniques using three-element ESPAR antennas. IEEE Commun. Lett. 13(4), 236–238 (2009)

    Article  Google Scholar 

  24. L. Zheng, D.N.C. Tse, Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Trans. Inform. Theor. 49(5), 1073–1096 (2003)

    Article  MATH  Google Scholar 

  25. “3rd Generation partnership project.” [Online]. Available: http://www.3gpp.org/LTE-Advanced. Accessed 15 July 2013

  26. R. Vaughan, Switched parasitic elements for antenna diversity. IEEE Trans. Antenn. Propag. 47(2), 399–405 (1998)

    Article  Google Scholar 

  27. J.H. Reed, Software Radio: A Modern Approach to Radio Engineering. (A division of Pearson Education Inc. Prentice Hall, Englewood Cliffs, 2002)

    Google Scholar 

  28. Y. Fei, Compact MIMO terminals with matching networks, PhD Thesis, The University of Edinburgh, 2008

    Google Scholar 

  29. D.M. Pozar, The active element pattern. IEEE Trans. Antenn. Propag. 42(8), 1176–1178 (1994)

    Article  Google Scholar 

  30. K. Rosengren, P.-S. Kildal, Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: theory, simulation and measurement in reverberation chamber. IEE Microwaves Antenn. Propag. 152(1), 7–16 (2005)

    Article  Google Scholar 

  31. B. Clerckx, C. Oestges, MIMO Wireless Communication: From Real-World Propagation to Space-Time Code Design (Academic, Oxford, 2007)

    Google Scholar 

  32. M. Vu, A. Paulraj, MIMO wireless linear precoding. IEEE Signal Process. Mag. 24(5), (2007)

    Google Scholar 

  33. D.S. Shiu, G.J. Foschini, M.J. Gans, J.M. Kahn, Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans. Commun. 48(3), 502–513 (2000)

    Article  Google Scholar 

  34. D. Gore, R. Nabar, A. Paulraj, Introduction to Space-Time Wireless Communications (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  35. H. Shin, J.H. Lee, Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inform. Theor. 49(10), 2636–2647 (2003)

    Article  MathSciNet  Google Scholar 

  36. E.T. Browne, Introduction to the Theory of Determinants and Matrices. (University of North Carolina, Chapel Hill, 1958)

    Google Scholar 

  37. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2006)

    MATH  Google Scholar 

  38. G.J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs. Tech. J. 1(2), 41–59 (1996)

    Article  Google Scholar 

  39. R. Narasimhan, Transmit antenna selection based on outage probability for correlated MIMO multiple access channels. IEEE Trans. Wireless Comm. 5(10), 2945–2955 (2006)

    Article  Google Scholar 

  40. J. Tsao, B.D. Steinberg, Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique. IEEE Trans. Antenn. Propag. 36(4), 543–556 (1988)

    Article  Google Scholar 

  41. R. Roy, T. Kailath, ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  42. B.H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, K.I. Pedersen, Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE J. Sel. Area. Commun. 17(3), 434–450 (1999)

    Article  Google Scholar 

  43. J.W. Wallace, M.A. Jensen, Sparse power angle spectrum estimation. IEEE Trans. Antenn. Propag. 57(8), 2452–2460 (2009)

    Article  Google Scholar 

  44. V. Erceg, “TGn channel models: IEEE 802.11 standard contribution 802.11–03/940r4,” 2004

    Google Scholar 

  45. R.E. Caflisch, “Monte Carlo and quasi-Monte Carlo methods,” 1998

    Google Scholar 

  46. Q.H. Spencer, B.D. Jeffs, M.A. Jensen, A.L. Swindlehurst, Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE J. Sel. Area. Commun. 18(3), 347–360 (2000)

    Article  Google Scholar 

  47. P. Laspougeas, P. Pajusco, J.-C. Bic, Radio propagation in urban small cells environment at 2 GHz: experimental spatio-temporal characterization and spatial wideband channel model, in IEEE Vehicular Technology Conference (VTC), Boston, MA, 2000

    Google Scholar 

  48. R.H. Byrd, J.C. Gilbert, J. Nocedal, A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. R.A. Waltz, J.L. Morales, J. Nocedal, D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107(3), 391–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. “The Mathworks, Natick MA.” [Online]. Available: http://www.mathworks.com. Accessed on 15 July 2013

  51. G. Caire, S. Shamai, On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. Inform. Theor. 49(7), 1691–1706 (2003)

    Article  MathSciNet  Google Scholar 

  52. T. Yoo, A. Goldsmith, On the optimality of the multi-antenna broadcast scheduling using zero-forcing beamforming. IEEE J. Sel. Area. Commun. 24(3), 528–541 (2006)

    Article  Google Scholar 

  53. P. Viswanath, D. Tse, R. Laroia, Opportunistic beamforming using dumb antennas. IEEE Trans. Inform. Theor. 48(6), 1277–1294 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Avidor, J. Ling, C. Papadias, Jointly opportunistic beamforming and scheduling for downlink packet access, in IEEE International Conference on Communications (ICC), Paris, France, 2004

    Google Scholar 

  55. M. Sharif, B. Hassibi, On the capacity of MIMO broadcast channels with partial side information. IEEE Trans. Inform. Theor. 51(2), 506–522 (2005)

    Article  MathSciNet  Google Scholar 

  56. L. Zan, S.A. Jafar, Combined opportunistic beamforming and receive antenna selection [cellular downlink applications], in IEEE Wireless Communications and Networking Conference, New Orleans, Louisiana, 2005

    Google Scholar 

  57. R. Bosisio, U. Spagnolini, On the sum-rate of opportunistic beamforming schemes with multiple antennas at the receiver, in IEEE International Conference on Communications (ICC), Glasgow, 2007

    Google Scholar 

  58. M. Pun, V. Koivunen, H.V. Poor, Opportunistic scheduling and beamforming for MIMO-SDMA downlink systems with linear combining, in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, 2007

    Google Scholar 

  59. C. Chang, Y. Lee, Opportunistic beamforming systems with diversity combining, in 7th International Conference on Information, Communications and Signal Processing, 1–5 (2009)

    Google Scholar 

  60. E.P. Tsakalaki, O.N. Alrabadi, C.B. Papadias, R. Prasad, Reduced-complexity radio architectures for enhanced receive selection combining in multiuser diversity systems. Int. J. Antenn. Propag. (2012). doi:10.1155/2012/454210

    Google Scholar 

  61. E.P. Tsakalaki, O.N. Alrabadi, C.B. Papadias, R. Prasad, Enhanced selection combining for compact single rf user terminals in multiuser diversity systems, in IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Instanbul, 2010

    Google Scholar 

  62. D.V. Thiel, Switched parasitic antennas and controlled reactance parasitic antennas: a systems comparison, in IEEE Antennas and Propagation Society Symposium, 3, 3211–3214 (2004). doi:10.1109/APS.2004.1332062

    Google Scholar 

  63. E.P. Tsakalaki, O.N. Alrabadi, C.B. Papadias, R. Prasad, Spatial spectrum sensing for wireless handheld terminals: design challenges and novel solutions based on tunable parasitic antennas [dynamic spectrum management]. IEEE Wireless Comm. Mag. 17(4), 33–40 (2010)

    Article  Google Scholar 

  64. O.N. Alrabadi, MIMO communication using single feed antenna arrays. PhD Dissertation, Aalborg Universitet, 2011

    Google Scholar 

  65. R. Vaughan, J.B. Andersen, Antenna diversity in mobile communications. IEEE Trans. Veh. Tech. 36(4) (1987)

    Google Scholar 

  66. D.M. Pozar, Microwave Engineering (Wiley, Hoboken, 2005)

    Google Scholar 

  67. Mathworks, MATLAB, [Online]. Available: http://www.mathworks.com/. Accessed 12 June 2012

  68. M.K. Simon, M.-S. Alouini, Digital Communication over Fading Channels (Wiley, New York, 2005)

    Google Scholar 

  69. R. Mohammadkhani, J.S. Thompson, MIMO capacity improvement in the presence of antenna mutual coupling, in 18th Iranian Conference on Electrical Engineering, Isfahan University of Technology, Isfahan, Iran, 2010

    Google Scholar 

  70. O.N. Alrabadi, J. Perruisseau-Carrier, A. Kalis, MIMO transmission using a single RF source: theory and antenna design. IEEE Trans. Antenn. Propag. 2(1), 654–664 (2012)

    Article  MathSciNet  Google Scholar 

  71. W.L. Schroeder, P. Schmitz, C. Thome, Miniaturization of mobile phone antennas by utilization of chassis mode resonances, in German Microwave Conference, Karlsruhe, Germany, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elpiniki Tsakalaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsakalaki, E. (2014). Multiple-Active Multiple-Passive Antenna Systems and Applications. In: Kalis, A., Kanatas, A., Papadias, C. (eds) Parasitic Antenna Arrays for Wireless MIMO Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7999-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7999-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7998-7

  • Online ISBN: 978-1-4614-7999-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics