Skip to main content

Over-the-Air Proof of Concepts

  • Chapter
  • First Online:
  • 1638 Accesses

Abstract

In this chapter we will validate the previously reported concept regarding the capability of transmitting multiple signals (i.e., performing spatial multiplexing) using one RF chain by using the ESPAR antenna that is presented in Chap. 6. The experiments were conducted in the indoor environment of AIT’s B-WiSE Lab, using a 2.6 GHz prototype made of a single active printed dipole coupled to two passive ones and AIT’s MIMO testbed. To the best of our knowledge, this is the first over-the-air experiment of spatial multiplexing with a single RF front-end yet to be demonstrated. The use of this specific ESPAR antenna in a cognitive radio context will also be shown. The ESPAR antenna will be used as a secondary transmitter and based on two different scenarios we will measure the interference it will cause to the primary receiver. Finally, a new printed parasitic antenna array with one active and four parasitic elements aiming for maximum beamforming gain toward one direction will be presented.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This part of the work has been partially funded by the European Commission’s 7th Framework Programme, under Future and Emerging Technologies (FET) project CROWN (# 233843).

  2. 2.

    The anechoic chamber belongs to Intracom Telecom.

References

  1. A. Kalis, A.G. Kanatas, C.B. Papadias, A novel approach to MIMO transmission using a single RF Front End. IEEE J. Sel. Area. Comm. 26(6), 972 –980 (2008)

    Article  Google Scholar 

  2. O. Alrabadi, C.B. Papadias, A. Kalis, R. Prasad, A universal encoding scheme for MIMO transmission using a single active element for PSK modulation schemes. IEEE Trans. Wireless Commun. 8(10), 5133 –5142 (2009)

    Article  Google Scholar 

  3. O. Alrabadi, J. Perruisseau-Carrier, A. Kalis, MIMO transmission using a single RF source: theory and antenna design. IEEE Trans. Antenn. Propag. 60(2), 654 –664 (2012)

    Article  MathSciNet  Google Scholar 

  4. Trimble Navigation Limited, Thunderbolt GPS Disciplined Clock, GPS Clock for the Wireless Infrastructure, http://www.trimble.com/products/pdf/thunder.pdf. Accessed 19 June 2012

  5. Innovative Integration, SBC62, http://www.innovative-dsp.com/products.php?product=SBC62. Accessed 25 June 2012

  6. Innovative Integration, DAC40, http://www.innovative-dsp.com/products.php?product=DAC40. Accessed 26 June 2012

  7. National Semiconductor, LMX2306/LMX2316/LMX2326 PLLatinum Low Power Frequency Synthesizer for RF Personal Communications LMX2306 - 550 MHz LMX2316 - 1.2 GHz LMX2326 - 2.8 GHz, http://www.ti.com/lit/ds/symlink/lmx2326.pdf. Accessed 02 July 2012

  8. G.J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs. Tech. J. 1(2), pp. 41–59 (1996)

    Article  Google Scholar 

  9. S. Srinivasa, S. Jafar, Cognitive radios for dynamic spectrum access - the throughput potential of cognitive radio: A theoretical perspective. Comm. Mag. IEEE 45(5), 73–79 (2007)

    Article  Google Scholar 

  10. S. Srinivasa, S. Jafar, The throughput potential of cognitive radio: a theoretical perspective, in Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC ’06, Pacific Grove, CA, 29 October 2006–1 November 2006, pp. 221–225

    Google Scholar 

  11. J. Perruisseau-Carrier, O. Alrabadi, A. Kalis, Implementation of a reconfigurable parasitic antenna for beam-space BPSK transmissions, in Microwave Conference (EuMC), 2010 European, Paris, 28–30 September 2010, pp. 644–647

    Google Scholar 

  12. O. Alrabadi, C. Papadias, A. Kalis, N. Marchetti, R. Prasad, Mimo transmission and reception techniques using three-element espar antennas. IEEE Comm. Lett. 13(4), 236–238 (2009)

    Article  Google Scholar 

  13. Eurecom, The Mobile Communications department at EURECOM, http://www.eurecom.fr/cm/. Accessed 15 June 2012

  14. The Mobile Communications department at EURECOM, OpenAirInterface, http://www.openairinterface.org/. Accessed 15 June 2012

  15. O. Gustafsson, K. Amiri, D. Andersson, A. Blad, C. Bonnet, J. Cavallaro, J. Declerck, A. Dejonghe, P. Eliardsson, M. Glasse, A. Hayar, L. Hollevoet, C. Hunter, M. Joshi, F. Kaltenberger, R. Knopp, K. Le, Z. Miljanic, P. Murphy, F. Naessens, N. Nikaein, D. Nussbaum, R. Pacalet, P. Raghavan, A. Sabharwal, O. Sarode, P. Spasojevic, Y. Sun, H. Tullberg, T. Vander Aa, L. Van der Perre, M. Wetterwald, M. Wu, Architectures for cognitive radio testbeds and demonstrators—an overview, in Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks Communications. CROWNCOM 2010. Cannes, 9–11 June 2010, pp. 1–6

    Google Scholar 

  16. Mentor Graphics, IE3D, Electromagnetic (EM) Design & Simulation Software, http://www.mentor.com/electromagnetic-simulation/. Accessed 12 June 2012

  17. Mathworks, MATLAB, http://www.mathworks.com/. Accessed 12 June 2012

Download references

Acknowledgements

Philippos Tragas is now working as an RF/Wireless Engineer in Broadcom Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippos Tragas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tragas, P. (2014). Over-the-Air Proof of Concepts. In: Kalis, A., Kanatas, A., Papadias, C. (eds) Parasitic Antenna Arrays for Wireless MIMO Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7999-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7999-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7998-7

  • Online ISBN: 978-1-4614-7999-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics