Skip to main content

Transmitter Techniques

  • Chapter
  • First Online:
Parasitic Antenna Arrays for Wireless MIMO Systems
  • 1647 Accesses

Abstract

This chapter quotes a literature review on various transmission techniques that enable single RF parasitic antenna arrays to support MIMO applications. Although commonly in the literature purely reactive antenna loading has been assumed, the chapter includes also the case of complex loading, which as illustrated can improve dramatically the beamforming capabilities of ESPAR antennas and the consequent capacity performance. Next, the chapter focuses on transmission techniques assuming purely imaginary antenna loading. First, a stochastic-based algorithm is presented for the estimation of the appropriate loadings that produce a desired pattern. Furthermore, indicative loading architectures are presented that enable the parasitic antennas to achieve MIMO or transmit diversity. It will be understood that ESPAR antennas can be strong candidates for future performance-hungry and lightweight mobile terminals. Except otherwise specified a parasitic array with three elements is considered, with one active in the middle surrounded by two peripherals parasitics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such a spacing is feasible. For example [23] demonstrates an SPA with interelement spacing of λ∕10, whereas [29] demonstrates an ESPAR antenna with spacing of λ∕20.

  2. 2.

    Notice that the basis patterns in (4.35) are orthogonal, but not orthonormal.

  3. 3.

    As noticed in Chap. 3, this is an ideal receiver.

  4. 4.

    The port beampattern is the one obtained when exciting the one port with a unit voltage, while terminating the other to its matching impedance.

References

  1. S. Alamouti, A simple transmit diversity technique for wireless communications. IEEE J. Sel. Commun. 16(8), 1451–1458 (1998)

    Article  Google Scholar 

  2. O. Alrabadi, C. Papadias, A novel alamouti transmission technique via a single rf source and a miniaturized antenna system, in 2010 IEEE Eleventh International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Marakech, Morocco pp. 1–4 (2010)

    Google Scholar 

  3. O. Alrabadi, C. Papadias, A. Kalis, N. Marchetti, R. Prasad, Mimo transmission and reception techniques using three-element espar antennas. IEEE Commun. Lett. 13(4), 236–238 (2009)

    Article  Google Scholar 

  4. O. Alrabadi, C. Papadias, A. Kalis, N. Marchetti, R. Prasad, Spatial multiplexing via antenna switching. IEEE Commun. Lett. 13(8), 594–596 (2009)

    Article  Google Scholar 

  5. O. Alrabadi, C. Papadias, A. Kalis, R. Prasad, A universal encoding scheme for mimo transmission using a single active element for psk modulation schemes. IEEE Trans. Wirel. Commun. 8(10), 5133–5142 (2009)

    Article  Google Scholar 

  6. V. Barousis, A. Kanatas, A. Kalis, C. Papadias, A stochastic beamforming algorithm for espar antennas. IEEE Antennas Wirel. Propag. Lett. 7, 745–748 (2008)

    Article  Google Scholar 

  7. V. Barousis, A. Kanatas, A. Kalis, C. Papadias, Closed-loop beamspace mimo systems with low hardware complexity, in Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th, Barcelona, Spain (2009), pp. 1–5

    Google Scholar 

  8. D. Chin, A more efficient global optimization algorithm based on Styblinski and Tang. Lett. Ed. Neural Network. 7(3), 573–574 (1994)

    Article  MathSciNet  Google Scholar 

  9. H. Chaloupka, X. Wang, On the properties of small arrays with closely spaced antenna elements, in Antennas and Propagation Society International Symposium, 2004. IEEE, vol. 3 (2004), pp. 2699–2702

    Google Scholar 

  10. S. Chen, A. Hirata, T. Ohira, N.C. Karmakar, Fast beamforming of electronically steerable parasitic array radiator antennas: theory and experiment. IEEE Trans. Antennas Propag. 52(7), 1819–1832 (2004)

    Article  Google Scholar 

  11. L.M. Correia, Wireless Flexible Personalised Communications (COST 259 Final Report) (Wiley, Chichester, 2001)

    Google Scholar 

  12. J. Coetzee, Y. Yu, Closed-form design equations for decoupling networks of small arrays. Electron. Lett. 44(25), 1441–1442 (2008)

    Article  Google Scholar 

  13. Electromagnetic simulation and electronic design simulation. [Online]. Available: www.mentor.com/pcb/hyperlynx/3d-em/,17ofJuly2013

    Google Scholar 

  14. Y. Fei, Y. Fan, B.K. Lau, J. Thompson, Optimal single-port matching impedance for capacity maximization in compact mimo arrays. IEEE Trans. Antennas Propag. 56(11), 3566–3575 (2008)

    Article  Google Scholar 

  15. J. Fuhl, A. Molisch, E. Bonek, Unified channel model for mobile radio systems with smart antennas. IEE Proc. Radar Sonar Navig. 145(1), 32–41 (1998)

    Article  Google Scholar 

  16. B. Han, V. Barousis, A. Kalis, A. Kanatas, Active parasitic arrays for low cost compact mimo transmitters, in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP) (2011), pp. 3663–3667

    Google Scholar 

  17. A. Kalis, A. Kanatas, M. Carras, A. Constantinides, On the performance of mimo systems in the wavevector domain, in IST Mobile & Wireless Comm Summit, Mykonos, Greece (2006)

    Google Scholar 

  18. A. Kalis, A. Kanatas, C. Papadias, A novel approach to mimo transmission using a single rf front end. IEEE J. Sel. Areas Commun. 26(6), 972–980 (2008)

    Article  Google Scholar 

  19. B.K. Lau, J. Andersen, On closely coupled dipoles with load matching in a random field, in 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland (2006), pp. 1–5

    Google Scholar 

  20. T. Moon, W. Stirling, Mathematical Methods and Algorithms for Signal Processing (Prentice Hall, Englewood Cliffs, 2001)

    Google Scholar 

  21. T. Ohira, K. Gyoda, Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming, in 2000 IEEE International Conference on Phased Array Systems and Technology, 2000. Proceedings (2000), pp. 101–104

    Google Scholar 

  22. A. Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wireless Communications (Cambridge University Press, New York, 2003)

    Google Scholar 

  23. J. Perruisseau-Carrier, O. Alrabadi, A. Kalis, Implementation of a reconfigurable parasitic antenna for beam-space bpsk transmissions, in Microwave Conference (EuMC), 2010 European (2010), pp. 644–647

    Google Scholar 

  24. A. Roscoe, R. Perrott, Large finite array analysis using infinite array data. IEEE Trans. Antennas Propag. 42(7), 983–992 (1994)

    Article  Google Scholar 

  25. J. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37, 332–341 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Spall, Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 34(3), 817–823 (1998)

    Article  Google Scholar 

  27. M. Styblinski, T. Tang, Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing. J. Neural Netw. 3(4) 467–483 (1990)

    Article  Google Scholar 

  28. M. Wennstrom, T. Svantesson, An antenna solution for mimo channels: the switched parasitic antenna, in 2001 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, San Diego, vol. 1 (2001), pp. A-159–A-163

    Google Scholar 

  29. M. Yamamoto, M. Taromaru, H. Sadamichi, A. Shimizu, Performance of angle switch diversity using espar antenna for mobile reception of terrestrial digital tv, in Vehicular Technology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th (2006), pp. 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlasis I. Barousis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barousis, V.I. (2014). Transmitter Techniques. In: Kalis, A., Kanatas, A., Papadias, C. (eds) Parasitic Antenna Arrays for Wireless MIMO Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7999-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7999-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7998-7

  • Online ISBN: 978-1-4614-7999-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics