Skip to main content

Gender Disparity of Depression: The Role of Endocannabinoids and Noradrenergic Function

  • Chapter
  • First Online:
Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders

Abstract

Depression is a common and potentially debilitating psychiatric disorder, and is twice as prevalent in women as in men. The traditional monoamine hypothesis of depression provides one perspective into the biological basis of depression, but it is unable to explain all facets of this disease. The reason for the sex difference is currently unclear. The endocannabinoid system, a major neuromodulatory system in the brain, interacts with multiple neurotransmitter and hormone systems, including the monoamine neurotransmitter norepinephrine. Increased endocannabinoid signaling appears to cause greater levels of noradrenergic activation in the locus coeruleus and in axons projecting into other parts of the brain. Dysfunctions in both the endocannabinoid system and the noradrenergic system have been linked to the physiology of depression, with the hypothalamic–pituitary–adrenal (HPA) axis stress response being a major area of interaction. Norepinephrine acts as a “gatekeeper” to the body’s stress response, mobilizing the HPA axis to react to stressors. The endocannabinoid system is also a “gatekeeper” to this response, preventing maladaptive HPA hyperactivation and potentially protecting the noradrenergic system from entering into a “burn-out” state in the face of chronic stress. Sexual dimorphism in both systems, as well as in how cells of the locus coeruleus respond to stress, may contribute to some of the sex differences seen in depression. Disruptions to these systems may underlie some cases of depression, and provide potential targets for novel antidepressant treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie ED, Jacobs BL (1987) Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci 7:2837–2843

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-V. American Psychiatric Association, Washington

    Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norpeinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    PubMed  CAS  Google Scholar 

  • Atkinson HC, Leggett JD, Wood SA et al (2010) Regulation of the hypothalamic-pituitary-adrenal axis circadian rhythm by endocannabinoids is sexually diergic. Endocrinology 151:3720–3727

    PubMed  CAS  Google Scholar 

  • Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431:312–316

    PubMed  CAS  Google Scholar 

  • Bangasser DA, Curtis A, Reyes BA et al (2010) Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry 15:877–904

    PubMed  CAS  Google Scholar 

  • Bangasser DA, Reyes BA, Piel D et al (2013) Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol Psychiatry 18:166–173

    PubMed  CAS  Google Scholar 

  • Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58:1–17

    PubMed  CAS  Google Scholar 

  • Best NR, Rees MP, Barlow DH, Cowen PJ (1992) Effect of estradiol implant on noradrenergic function and mood in menopausal subjects. Psychoneuroendocrinology 17:87–93

    PubMed  CAS  Google Scholar 

  • Bowman RE, Beck KD, Luine VN (2003) Chronic stress effects on memory: sex differences in performance and monoaminergic activity. Horm Behav 43:48–59

    PubMed  CAS  Google Scholar 

  • Carvalho AF, Van Bockstaele EJ (2012) Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 38:59–67

    PubMed  CAS  Google Scholar 

  • Carvalho AF, Mackie K, Van Brockstaele EJ (2010) Cannabinoid modulation of limbic forebrain noradrenergic circuitry. Eur J Neurosci 31:286–301

    PubMed  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713

    PubMed  CAS  Google Scholar 

  • Conrad CD, Jackson JL, Wieczorek L et al (2004) Acute stress impairs spatial memory in male but not female rats: influence of estrous cycle. Pharmacol Biochem Behav 78:569–579

    PubMed  CAS  Google Scholar 

  • Curtis AL, Bethea T, Valentino RJ (2006) Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacology 31:544–554

    PubMed  CAS  Google Scholar 

  • Dalla C, Antoniou K, Drossopoulou G et al (2005) Chronic mild stress impact: are females more vulnerable? Neuroscience 135:703–714

    PubMed  CAS  Google Scholar 

  • Dalla C, Antoniou K, Kokras N et al (2008a) Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol Behav 93:595–605

    CAS  Google Scholar 

  • Dalla C, Edgecomb C, Whetstone AS, Shors TJ (2008b) Females do not express learned helplessness like males do. Neuropsychopharmacology 33:1559–1569

    Google Scholar 

  • Dalla C, Pitychoutis PM, Kokras N, Papadopoulou-Daifoti Z (2010) Sex differences in animal models of depression and antidepressant response. Basic Clin Pharmacol Toxicol 106:226–233

    PubMed  CAS  Google Scholar 

  • Domschke K, Dannlowski U, Ohrmann P, Lawford B, Bauer J, Kugel H, Baune BT (2008) Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharm 18:751–759

    CAS  Google Scholar 

  • Drossopoulou G, Antoniou K, Kitraki E etal (2004) Sex differences in behavioral, neurochemical and neuroendocrine effects induced by the forced swim test in rats. Neuroscience 126:849–857

    PubMed  CAS  Google Scholar 

  • Eisch AJ, Cameron HA, Encinas JM, Meltzer LA, Ming GL, Overstreet-Wadiche LS (2008) Adult neurogenesis, mental health, and mental illness: hope or hype? J Neurosci 28:11785–11791

    PubMed  CAS  Google Scholar 

  • Esteban S, García-Sevilla JA (2011) Effects induced by cannabinoids on monoaminergic systems in the brain and their implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 38:78–87

    PubMed  Google Scholar 

  • Fisar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol 381:563–572

    PubMed  CAS  Google Scholar 

  • Flugge G, Van KM, Meyer H, Fuchs E (2003) Alpha2A and alpha2C-adrenoceptor regulation in the brain: alpha2A changes persist after chronic stress. Eur J Neurosci 17:917–928

    PubMed  CAS  Google Scholar 

  • Flugge G, Van KM, Mijnster MJ (2004) Perturbations in brain monoamine systems during stress. Cell Tissue Res 315:1–14

    PubMed  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    PubMed  CAS  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Piomelli D (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci U S A 102:18620–18625

    PubMed  CAS  Google Scholar 

  • Goddard AW, Ball SG, Martinez J, Robinson MJ, Yang CR, Russell JM, Shekhar A (2010) Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety 27:339–350

    PubMed  CAS  Google Scholar 

  • Gorzalka BB, Dang SS (2012) Endocannabinoids and gonadal hormones: bidirectional interactions in physiology and behavior. Endocrinology 153:1016–1024

    PubMed  CAS  Google Scholar 

  • Gorzalka BB, Hill MN (2009) Integration of endocannabinoid signaling into the neural network regulating stress-induced activation of the hypothalamic-pituitary-adrenal axis. Curr Top Behav Neurosci 1:289–306

    PubMed  CAS  Google Scholar 

  • Gorzalka BB, Hill MN (2011) Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 35:1575–1585

    PubMed  CAS  Google Scholar 

  • Gorzalka BB, Hill MN, Chang SC (2010) Male–female differences in the effects of cannabinoids on sexual behavior and gonadal hormone function. Horm Behav 58:91–99

    PubMed  CAS  Google Scholar 

  • Halbreich U, Sharpless N, Asnis GM et al (1987) Afternoon continuous plasma levels of 3-methoxy-4-hydroxphenylglycol and age. Distinctive biologic subgroups of endogenous depression? Arch Gen Psychiatry 44:804–812

    PubMed  CAS  Google Scholar 

  • Heinsbroek RP, van Haaren F, Feenstra MG et al (1991) Controllable and uncontrollable footshock and monoaminergic activity in the frontal cortex of male and female rats. Brain Res 551:247–255

    PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, De Costa BR, Richfield EK (1991) Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res 547:267–274

    PubMed  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005) Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur Neuropsychopharmacology 15:593–599

    CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2009) Impairments in endocannabinoid signaling and depressive illness. JAMA 301:1165–1166

    PubMed  CAS  Google Scholar 

  • Hill MN, Karacabeyli ES, Gorzalka BB (2007) Estrogen recruits the endocannabinoid system to modulate emotionality. Psychoneuroendocrinology 32:350–357

    PubMed  CAS  Google Scholar 

  • Hill MN, Miller GE, Ho WS, Gorzalka BB, Hillard CJ (2008) Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry 41:48–53

    PubMed  CAS  Google Scholar 

  • Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ (2009) Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34:1257–1262

    PubMed  CAS  Google Scholar 

  • Hill MN, McLaughlin RJ, Bingham B et al (2010) Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci U S A 107:9406–9411

    PubMed  CAS  Google Scholar 

  • Himmi T, Dallaporta M, Perrin J, Orsini JC (1996) Neuronal responses to delta 9-tetrahydrocannabinol in the solitary tract nucleus. Eur J Pharmacol 312:273–279

    PubMed  CAS  Google Scholar 

  • Himmi T, Perrin J, El Ouazzani T, Orsini JC (1998) Neuronal responses to cannabinoid receptor ligands in the solitary tract nucleus. Eur J Pharmacol 359:49–54

    PubMed  CAS  Google Scholar 

  • Horder J, Cowen PJ, Di Simplicio M, Browning M, Harmer CJ (2009) Acute administration of the cannabinoid CB1 antagonist rimonabant impairs positive affective memory in healthy volunteers. Psychopharmacology 205:85–91

    PubMed  CAS  Google Scholar 

  • Horder J, Harmer CJ, Cowen PJ, McCabe C (2010) Reduced neural response to reward following 7 days treatment with the cannabinoid CB(1) antagonist rimonabant in healthy volunteers. Int J Neuropsychopharmacol 13:1103–1113

    PubMed  CAS  Google Scholar 

  • Hungund BL, Vinod KY, Kassir SA et al (2004) Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 9:184–190

    PubMed  CAS  Google Scholar 

  • Itoi K, Sugimoto N (2010) The brainstem noradrenergic systems in stress, anxiety, and depression. J Neuroendocrinol 22:355–361

    PubMed  CAS  Google Scholar 

  • Jelsing J, Larson PJ, Vrang N (2008) Identification of cannabinoid type 1 receptor expressing cocaine amphetamine-regulated transcript neurons in the rat hypothalamus and brainstem using in situ hybridization and immunohistochemistry. Neuroscience 154:641–652

    PubMed  CAS  Google Scholar 

  • Jelsing J, Galzin AM, Guillot E, Pruniaux MP, Larsen PJ, Vrang N (2009) Localization and phenotypic characterization of brainstem neurons activated by rimonabant and WIN55,212-2. Brain Res Bull 78:202–210

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Andrusiak E, Tran A et al (1997) Delta 9-tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology 16:426–432

    PubMed  CAS  Google Scholar 

  • Juhasz G, Chase D, Pegg E et al (2009) CNR1 gene is associated with high neuroticism and low agreeableness and interacts with recent negative life events to predict current depressive symptoms. Neuropsychopharmacology 34:2019–2027

    PubMed  CAS  Google Scholar 

  • Justinova Z, Mangieri RA, Bortolato M et al (2008) Fatty acid amide hydrolase inhibition heightens anandamide signaling without reinforcing effects in primates. Biol Psychiatry 64:930–937

    PubMed  CAS  Google Scholar 

  • Karandrea D, Kittas C, Kitraki E (2002) Forced swimming differentially affects male and female brain corticosteroid receptors. Neuroendocrinology 75:217–226

    PubMed  CAS  Google Scholar 

  • Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, Kendler HU (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 51:8–19

    PubMed  CAS  Google Scholar 

  • Khan A, Brodhead AE, Schwartz KA, Kolts RL, Brown WA (2005) Sex differences in antidepressant response in recent antidepressant clinical trials. J Clin Psychopharmacol 25:318–324

    PubMed  Google Scholar 

  • Kitayama I, Yaga T, Kayahara T, Nakano K, Murase S, Otani M, Nomura J (1997) Long-term stress degenerates, but imipramine regenerates, noradrenergic axons in the rat cerebral cortex. Biol Psychiat 42:687–696

    PubMed  CAS  Google Scholar 

  • Kitraki E, Kremmyda O, Youlatos D et al (2004) Gender-dependent alterations in corticosteroid receptor status and spatial performance following 21 days of restraint stress. Neuroscience 125:47–55

    PubMed  CAS  Google Scholar 

  • Kuehner C (2003) Gender differences in unipolar depression: an update of epidemiological findings and possible explanations. Acta Psychiatr Scand 108:163–174

    PubMed  CAS  Google Scholar 

  • Lambert G, Johansson M, Agren H, Friberg P (2000) Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness. Arch Gen Psychiat 57:787–793

    PubMed  CAS  Google Scholar 

  • Liu Y, Ishida Y, Shinoda K, Nakamura S (2003) Effects of repeated stress on regeneration of serotonergic and noradrenergic axons in the cerebral cortex of adult rats. Neurosci Lett 339:227–230

    PubMed  CAS  Google Scholar 

  • Llorente R, Llorente-Berzal A, Petrosino S et al (2008) Gender-dependent cellular and biochemical effects of materal deprivation on the hippocampus of neonatal rats: a possible role for the endocannabinoid system. Dev Neurobiol 68:1334–1347

    PubMed  CAS  Google Scholar 

  • López-Gallardo M, Llorente R, Llorente-Berzal A et al (2008) Neuronal and glial alterations in the cerebellar cortex of maternally deprived rats: gender differences and modulatory effects of two inhibitors of endocannabinoid inactivation. Dev Neurobiol 68:1429–1440

    PubMed  Google Scholar 

  • Lundberg U (2005) Stress hormones in health and illness: the roles of work and gender. Psychoneuroendocrinology 30:1017–1021

    PubMed  CAS  Google Scholar 

  • Mailleux P, Vanderhaeghen JJ (1992) Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48:655–668

    PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC et al (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    PubMed  CAS  Google Scholar 

  • Martel MM, Klump K, Nigg JT, Breedlove SM, Sisk CL (2009) Potential hormonal mechanisms of attention-deficit/hyperactivity disorder and major depressive disorder: a new perspective. Horm Behav 55:465–479

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Bonner TI, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327:535–550

    PubMed  CAS  Google Scholar 

  • McKenna MT, Michaud CM, Murray CJ, Marks JS (2005) Assessing the burden of disease in the United States using disability-adjusted life years. Am J Prev Med 28:415–423

    PubMed  Google Scholar 

  • McLaughlin RJ, Hill MN, Gorzalka BB (2009) Monoaminergic neurotransmission contributes to cannabinoid-induced activation of the hypothalamic-pituitary-adrenal axis. Eur J Pharmacol 624:71–76

    PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2006) Systemic effect of cannabinoids on the spontaneous firing rate of locus coeruleus neurons in rats. Eur J Pharmacol 534:83–88

    PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2007) CB(1) cannabinoid receptors inhibit the glutamatergic component of KCl-evoked excitation of locus coeruleus neurons in rat brain slices. Neuropharmacology 52:617–625

    PubMed  CAS  Google Scholar 

  • Mikics E, Vas J, Aliczki M, Halasz J, Haller J (2009) Interactions between the anxiogenic effects of CB1 gene disruption and 5-HT3 neurotransmission. Behav Pharmacol 20:265–272

    PubMed  CAS  Google Scholar 

  • Monteleone P, Bifulco M, Maina G et al (2010) Investigation of CNR1 and FAAH endocannabinoid gene polymorphisms in bipolar disorder and major depression. Pharmacol Res 61:400–404

    PubMed  CAS  Google Scholar 

  • Morrish AC, Hill MN, Riebe CJ, Gorzalka BB (2009) Protracted cannabinoid administration elicits antidepressant behavioral responses in rats: role of gender and noradrenergic transmission. Physiol Behav 98:118–124

    PubMed  CAS  Google Scholar 

  • Muntoni AL, Pillola G, Melis M, Perra S, Gessa GL, Pistis M (2006) Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. Eur J Neurosci 23:2385–2394

    PubMed  Google Scholar 

  • Nelson JC (2008) Anxious depression and response to treatment. Am J Psychiatry 165:297–299

    PubMed  Google Scholar 

  • Ordway GA, Klimek V (2001) Noradrenergic pathology in psychiatric disorders: postmortem studies. CNS Spectr 6:697–703

    PubMed  CAS  Google Scholar 

  • Oropeza VC, Page ME, Van Bockstaele EJ (2005) Systemic administration of WIN 55,212-2 increases norepinephrine release in the rat frontal cortex. Brain Res 1046:45–54

    PubMed  CAS  Google Scholar 

  • Oropeza VC, Mackie K, Van Brockstaele EJ (2007) Cannabinoid receptors are localized to noradrenergic axon terminals in the rat frontal cortex. Brain Res 1127:36–44

    PubMed  CAS  Google Scholar 

  • Page ME, Oropeza VC, Sparks SE et al (2007) Repeated cannabinoid administration increases indices of noradrenergic activity in rats. Pharmacol Biochem Behav 86:162–168

    PubMed  CAS  Google Scholar 

  • Patel S, Hillard CJ (2003) Cannabinoid-induced fos expression within A10 dopaminergic neurons. Brain Res 963:15–25

    PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145:5431–5438

    PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Hillard CJ (2005) Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci 21:1057–1069

    PubMed  Google Scholar 

  • Piccinelli M, Wilkinson G (2000) Gender differences in depression. Critical review. Br J Psychiatry 177:486–492

    PubMed  CAS  Google Scholar 

  • Pinos H, Collado P, Rodràguez-Zafra M et al (2001) The development of sex differences in the locus coeruleus of the rat. Brain Res Bull 56:73–78

    PubMed  CAS  Google Scholar 

  • Pitychoutis PM, Nakamura K, Tsonis PA et al (2009) Neurochemical and behavioral alterations in an inflammatory model of depression: sex differences exposed. Neuroscience 159:1216–1232

    PubMed  CAS  Google Scholar 

  • Rademacher DJ, Hillard CJ (2007) Interactions between endocannabinoids and stress-induced decreased sensitivity to natural reward. Prog Neuropsychopharmacol Biol Psychiatry 31:633–641

    PubMed  CAS  Google Scholar 

  • Rademacher DJ, Meier SE, Shi L, Ho WS, Jarrahian A, Hillard CJ (2008) Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology 54:108–116

    PubMed  CAS  Google Scholar 

  • Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrie P (2004) CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 28:640–648

    PubMed  CAS  Google Scholar 

  • Reber SO, Birkeneder L, Veenema AH, Obermeier F, Falk W, Straub RH, Neumann ID (2007) Adrenal insufficiency and colonic inflammation after a novel chronic psycho-social stress paradigm in mice: implications and mechanisms. Endocrinology 148:670–682

    PubMed  CAS  Google Scholar 

  • Reich CG, Taylor ME, McCarthy MM (2009) Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain Res 203:264–269

    PubMed  CAS  Google Scholar 

  • Reyes BS, Rosario JC, Piana PT, Van Bockstaele EJ (2009) Cannabinoid modulation of cortical adrenergic receptors and transporters. J Neurosci Res 87:3671–3678

    PubMed  CAS  Google Scholar 

  • Rincavage HL, McDonnell DP, Kuhn CM (2003) Expression of functional estrogen receptor beta in locus coeruleus-derived Cath.a cells. Endocrinology 144:2829–2835

    PubMed  CAS  Google Scholar 

  • Rubino T, Vigano’ D, Realini N et al (2008) Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 33:2760–2771

    PubMed  CAS  Google Scholar 

  • Sanchis-Segura C, Cline BH, Marsicano G, Lutz B, Spanagel R (2004) Reduced sensitivity to reward in CB1 knockout mice. Psychopharmacology 176:223–232

    PubMed  CAS  Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223

    PubMed  CAS  Google Scholar 

  • Scavone JL, Mackie K, Van Brockstaele EJ (2010) Characterization of cannabinoid-1 receptors in the locus coeruleus: relationship with mu-opioid receptors. Brain Res 1312:18–31

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    PubMed  CAS  Google Scholar 

  • Servoa L, Rivkin M, Nakashima A, Sabban EL (2002) Estradiol stimulates gene expression of norepinephrine biosynthetic enzymes in rat locus coeruleus. Neuroendocrinology 75:193–200

    Google Scholar 

  • Shansky RM, Bender G, Arnsten AF (2009) Estrogen prevents norepinephrine alpha-2a receptor reversal of stress-induced work memory impairment. Stress 12:457–463

    PubMed  CAS  Google Scholar 

  • Shors TJ, Chua C, Falduto J (2001) Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 21:6292–6297

    PubMed  CAS  Google Scholar 

  • Shors TJ, Mathew J, Sisti HM et al (2007) Neurogenesis and helplessness are mediated by controllability in males but not females. Biol Psychiatry 62:487–495

    PubMed  Google Scholar 

  • Steiner MA, Wanisch K, Monory K et al (2008a) Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice. Pharmacogenomics J 8:196–208

    CAS  Google Scholar 

  • Steiner MA, Marsicano G, Wotjak CT, Lutz B (2008b) Conditional cannabinoid receptor type 1 mutants reveal neuron subpopulation-specific effects on behavioral and neuroendocrine stress responses. Psychoneuroendocrinology 33:1165–1170

    CAS  Google Scholar 

  • Sun MK, Alkon DL (2006) Differential gender-related vulnerability to depression induction and converging antidepressant responses in rats. J Pharmacol Exp Ther 316:926–932

    PubMed  CAS  Google Scholar 

  • Suárez J, Llorente R, Romero-Zerbo SY et al (2009) Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats. Hippocampus 7:623–632

    Google Scholar 

  • Tzavara ET, Perry KW, Rodriguez DE et al (2001) The cannabinoid CB(1) receptor antagonist SR141716A increases norepinephrine outflow in the rat anterior hypothalamus. Eur J Pharmacol 426:R3–R4

    PubMed  CAS  Google Scholar 

  • Tzavara ET, Davis RJ, Perry KW et al (2003) The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 138:544–553

    PubMed  CAS  Google Scholar 

  • Valdizán EM, Mato S, González-Maeso J et al (2011) Functionality of cannabinoid receptors in the prefrontal cortex of major depression suicide victims: influence of antidepressant treatment at the time of death. In: XIV Congreso Nacional Sociedad Española de Neurociencia (SENC), Salamanca, abstract P-105

    Google Scholar 

  • Van Laere K, Goffin K, Casteels C et al (2008) Gender-dependent increases with healthy aging of the human cerebral cannabinoid-type 1 receptor binding using [(18)F]MK-9470 PET. Neuroimage 39:1533–1541

    PubMed  Google Scholar 

  • Wood GE, Shors TJ (1998) Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proc Natl Acad Sci U S A 95:4066–4071

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Gorzalka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gorzalka, B., Dang, S. (2013). Gender Disparity of Depression: The Role of Endocannabinoids and Noradrenergic Function. In: Van Bockstaele, E. (eds) Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7940-6_8

Download citation

Publish with us

Policies and ethics