Skip to main content

Anatomical, Biochemical, and Behavioral Evidence for Cannabinoid Modulation of Noradrenergic Circuits: Role of Norepinephrine in Cannabinoid-Induced Aversion

  • Chapter
  • First Online:
Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders

Abstract

The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Recent evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. This chapter summarizes our current knowledge regarding the anatomical substrates underlying regulation of noradrenergic circuitry by the endocannabinoid system. It then presents biochemical and functional evidence showing an important effect of cannabinoid modulation on adrenergic receptor signaling. Finally, the impact of this interaction with respect to specific behaviors is explored, demonstrating that norepinephrine is a critical determinant of cannabinoid-induced aversion, which adds another dimension to how central noradrenergic circuitry is regulated by the cannabinoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arguello PA, Jentsch JD (2004) Cannabinoid CB1 receptor-mediated impairment of visuospatial attention in the rat. Psychopharmacology 177:141–150

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Chiang C, Alexinsky T (1991) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog Brain Res 88:501–520

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Delfs JM, Druhan J, Zhu Y (1999a) The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Ann N Y Acad Sci 877:486–498

    Article  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999b) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320

    Article  CAS  Google Scholar 

  • Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431:312–316

    Article  PubMed  CAS  Google Scholar 

  • Baigent M, Holme G, Hafner RJ (1995) Self reports of the interaction between substance abuse and schizophrenia. Aust N Z J Psychiatry 29:69–74

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43

    Article  PubMed  CAS  Google Scholar 

  • Barraco R, Ergene MEE, Parizon M, Bradley D (1992) All atlas of the rat subpostremal nucleus-tractus-solitarius. Brain Res Bull 29:703–765

    Article  PubMed  CAS  Google Scholar 

  • Bond DJ, Noronha MM, Kauer-Sant’Anna M, Lam RW, Yatham LN (2008) Antidepressant-associated mood elevations in bipolar II disorder compared with bipolar I disorder and major depressive disorder: a systematic review and meta-analysis. J Clin Psychiatry 69:1589–1601

    Article  PubMed  Google Scholar 

  • Callado LF, Meana JJ, Grijalba B, Pazos A, Sastre M, Garcia-Sevilla JA (1998) Selective increase of alpha2A-adrenoceptor agonist binding sites in brains of depressed suicide victims. J Neurochem 70:1114–1123

    Article  PubMed  CAS  Google Scholar 

  • Campos AC, Guimarães FS (2009) Evidence for a potential role for TRPV1 receptors in the dorsolateral periaqueductal gray in the attenuation of the anxiolytic effects of cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 33:1517–1521

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA (2003) Place conditioning to study drug reward and aversion. Methods Mol Med 84:243–249

    PubMed  CAS  Google Scholar 

  • Carr GD, White NM (1983) Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sci 33:2551–2557

    Article  PubMed  CAS  Google Scholar 

  • Carr GD, White NM (1986) Anatomical disassociation of amphetamine’s rewarding and aversive effects: an intracranial microinjection study. Psychopharmacology 89:340–346

    Article  PubMed  CAS  Google Scholar 

  • Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463:235–272

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AF, Van Bockstaele EJ (2011) Direct intra-accumbal infusion of a beta-adrenergic receptor antagonist abolishes WIN 55,212-2-induced aversion. Neurosci Lett 500:82–85

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AF, Van Bockstaele EJ (2012) Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 38:59–67

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AF, Mackie K, Van Bockstaele EJ (2010a) Cannabinoid modulation of limbic forebrain noradrenergic circuitry. Eur J Neurosci 31:286–301

    Article  Google Scholar 

  • Carvalho AF, Reyes A-RS, Sterling RC, Unterwald E, Van Bockstaele EJ (2010b) Contribution of limbic norepinephrine to cannabinoid-induced aversion. Psychopharmacology 211:479–491

    Article  CAS  Google Scholar 

  • Cecchi M, Capriles N, Watson SJ, Akil H (2007) Beta1 adrenergic receptors in the bed nucleus of stria terminalis mediate differential responses to opiate withdrawal. Neuropsychopharmacology 32:589–599

    Article  PubMed  CAS  Google Scholar 

  • Cecchi M, Khoshbouei H, Javors M, Morilak DA (2002) Modulatory effects of norepinephrine in the lateral bed nucleus of the stria terminalis on behavioral and neuroendocrine responses to acute stress. Neuroscience 112:13–21

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira JJ, Mailliet F, Almeida OFX, Jay TM, Sousa N (2007) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 27:2781–2787

    Article  PubMed  CAS  Google Scholar 

  • Charney DS, Woods SW, Heninger GR (1989) Noradrenergic function in generalized anxiety disorder: effects of yohimbine in healthy subjects and patients with generalized anxiety disorder. Psychiatry Res 27:173–182

    Article  PubMed  CAS  Google Scholar 

  • Cleghorn JM, Kaplan RD, Szechtman B, Szechtman H, Brown GM, Franco S (1991) Substance abuse and schizophrenia: effect on symptoms but not on neurocognitive function. J Clin Psychiatry 52:26–30

    PubMed  CAS  Google Scholar 

  • Davis M (1998) Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61:741–756

    Article  PubMed  Google Scholar 

  • Degroot A (2008) Role of cannabinoid receptors in anxiety disorders. In: Kofalvi A (ed) Cannabinoids and the brain. Springer, New York, pp 559–572

    Chapter  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones G (2000) Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403:430–434

    Article  PubMed  CAS  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones GS (1998) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806:127–140

    Article  PubMed  CAS  Google Scholar 

  • Derbenev AV, Stuart TC, Smith BN (2004) Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve. J Physiol 559:923–938

    PubMed  CAS  Google Scholar 

  • Després J-P, Ross R, Boka G, Alméras N, Lemieux I (2009) Effect of rimonabant on the high-triglyceride/ low-HDL-cholesterol dyslipidemia, intraabdominal adiposity, and liver fat: the ADAGIO-Lipids trial. Arterioscler Thromb Vasc Biol 29:416–423

    Article  PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  PubMed  CAS  Google Scholar 

  • Deyama S, Katayama T, Kondoh N, Nakagawa T, Kaneko S, Yamaguchi T, Yoshioka M, Minami M (2009) Role of enhanced noradrenergic transmission within the ventral bed nucleus of the stria terminalis in visceral pain-induced aversion in rats. Behav Brain Res 197:279–283

    Article  PubMed  CAS  Google Scholar 

  • Doyle MW, Bailey TW, Jin Y-H, Andresen MC (2002) Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J Neurosci 22:8222–8229

    PubMed  CAS  Google Scholar 

  • Duman RS, Nestler EJ (1995) Signal transduction pathways for catecholamine receptors In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, p 303

    Google Scholar 

  • Fisar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn-Schmiedeberg’s Arch Pharmacol 381:563–572

    Article  CAS  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    PubMed  CAS  Google Scholar 

  • Forray MI, Gysling K (2004) Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. Brain Res 47:145–160

    Article  CAS  Google Scholar 

  • Forray MI, Gysling K, Andres ME, Bustos G, Araneda S (2000) Medullary noradrenergic neurons projecting to the bed nucleus of the stria terminalis express mRNA for the NMDA-NR1 receptor. Brain Res Bull 52:163–169

    Article  PubMed  CAS  Google Scholar 

  • Friedman JI, Adler DN, Davis KL (1999) The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer’s disease. Biol Psychiatry 46:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano T, Morgese MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza D, Goldberg SR, Cuomo V, Piomelli D (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci U S A 102:18620–18625

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk LA, Stone WN, Gleser GC (1974) Peripheral versus central mechanisms accounting for antianxiety effects of propranolol. Psychosom Med 36:47–56

    PubMed  CAS  Google Scholar 

  • Griebel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57:261–267

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C, Barna I, Freund TF (2004a) Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur J Neurosci 19:1906–1912

    Article  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C, Freund TF (2004b) CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol 15:299–304

    Article  CAS  Google Scholar 

  • Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of “fear”-motivated behaviour. Naunyn-Schmiedeberg’s Arch Pharmacol 327:1–5

    Article  CAS  Google Scholar 

  • Heninger GR, Charney DS (1988) Monoamine receptor systems and anxiety disorders. Psychiatr Clin North Am 11:309–326

    PubMed  CAS  Google Scholar 

  • Henquet C, Krabbendam L, De Graaf R, Ten Have M, Van Os J (2006) Cannabis use and expression of mania in the general population. J Affect Disord 95:103–110

    Article  PubMed  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, De Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005a) Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur Neuropsychopharmacol 15:593–599

    Article  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005b) Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 16:333–352

    Article  CAS  Google Scholar 

  • Himmi T, Dallaporta M, Perrin J, Orsini J (1996) Neuronal Responses to delta 9-tetrahydrocannabinol in the solitary tract nucleus. Eur J Pharmacol 312:273–279

    Article  PubMed  CAS  Google Scholar 

  • Himmi T, Perrin J, Ouazzani TE, Orsini JC (1998) Neuronal responses to cannabinoid receptor ligands in the solitary tract nucleus. Eur J Pharmacol 359:49–54

    Article  PubMed  CAS  Google Scholar 

  • Itoi K, Sugimoto N (2010) The brainstem noradrenergic systems in stress, anxiety and depression. J Neuroendocrinol 22:355–361

    Article  PubMed  CAS  Google Scholar 

  • Janero DR, Makriyannis A (2009) Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin Emerg Drugs 14:43–65

    Article  PubMed  CAS  Google Scholar 

  • Jelsing J, Galzin AM, Guillot E, Pruniaux MP, Larsen PJ, Vrang N (2009) Localization and phenotypic characterization of brainstem neurons activated by rimonabant and WIN55,212-2. Brain Res Bull 78:202–210

    Article  PubMed  CAS  Google Scholar 

  • Jelsing J, Larsen PJ, Vrang N (2008) Identification of cannabinoid type 1 receptor expressing cocaine amphetamine-regulated transcript neurons in the rat hypothalamus and brainstem using in situ hybridization and immunohistochemistry. Neuroscience 154:641–652

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Andrusiak E, Tran A, Bowers MBJ, Roth RH (1997) Delta 9-tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology 16:426–432

    Article  PubMed  CAS  Google Scholar 

  • Johnston TG, Kelly CB, Stevenson MR, Cooper SJ (1999) Plasma norepinephrine and prediction of outcome in major depressive disorder. Biol Psychiatry 46:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Kerfoot EC, Chattillion EA, Williams CL (2008) Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences. Neurobiol Learn Mem 89:47–60

    Article  PubMed  Google Scholar 

  • Kerfoot EC, Williams CL (2011) Interactions between brainstem noradrenergic neurons and the nucleus accumbens shell in modulating memory for emotionally arousing events. Learn Mem 18:405–413

    Article  PubMed  CAS  Google Scholar 

  • Kombian SB, Ananthalakshmi KV, Edafiogho IO (2006) Enaminones and norepinephrine employ convergent mechanisms to depress excitatory synaptic transmission in the rat nucleus accumbens in vitro. Eur J Neurosci 24:2781–2788

    Article  PubMed  Google Scholar 

  • Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim DH, Yoon S-H, Ryu JH (2009) Sub-chronic administration of rimonabant causes loss of antidepressive activity and decreases doublecortin immunoreactivity in the mouse hippocampus. Neurosci Lett 467:111–116

    Article  PubMed  CAS  Google Scholar 

  • Leterrier C, Lainé J, Darmon M, Boudin H, Rossier J, Lenkei Z (2006) Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci 26:3141–3153

    Article  CAS  Google Scholar 

  • Llano I, Leresche N, Marty A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565–574

    Article  PubMed  CAS  Google Scholar 

  • MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting—homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci 18:211–219

    PubMed  CAS  Google Scholar 

  • Mailleux P, Vanderhaeghen JJ (1992) Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48:655–668

    Article  PubMed  CAS  Google Scholar 

  • Manzoni OJ, Bockaert J (2001) Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur J Pharmacol 412(2):R3–5

    Google Scholar 

  • Marsch R, Foeller E, Rammes G, Bunck M, Kössl M, Holsboer F, Zieglgänsberger W, Landgraf R, Lutz B, Wotjak CT (2007) Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci 27:832–839

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Bonner TI, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327:535–550

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  PubMed  CAS  Google Scholar 

  • Meana JJ, Barturen F, Garcia-Sevilla JA (1992) Alpha 2-adrenoceptors in the brain of suicide victims: increased receptor density associated with major depression. Biol Psychiatry 31:471–490

    Article  PubMed  CAS  Google Scholar 

  • Mechoulam R, Benshabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2004) Cannabinoids enhance N-methyl-D-aspartate-induced excitation of locus coeruleus neurons by CB1 receptors in rat brain slices. Neurosci Lett 363:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2006) Systemic effect of cannabinoids on the spontaneous firing rate of locus coeruleus neurons in rats. Eur J Pharmacol 534:83–88

    Article  PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2007) CB(1) cannabinoid receptors inhibit the glutamatergic component of KCl-evoked excitation of locus coeruleus neurons in rat brain slices. Neuropharmacology 52:617–625

    Article  PubMed  CAS  Google Scholar 

  • Mezey E, Tóth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM, Szallasi A (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci U S A 97:3655–3660

    Article  PubMed  CAS  Google Scholar 

  • Micale V, Cristino L, Tamburella A, Petrosino S, Leggio GM, Drago F, Di Marzo V (2009) Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology 34:593–606

    Article  PubMed  CAS  Google Scholar 

  • Minami M (2009) Neuronal mechanisms for pain-induced aversion behavioral studies using a conditioned place aversion test. Int Rev Neurobiol 85:135–144

    Article  PubMed  CAS  Google Scholar 

  • Moranta D, Esteban S, Garcia-sevilla JA (2004) Differential effects of acute cannabinoid drug treatment, mediated by CB 1 receptors, on the in vivo activity of tyrosine and tryptophan hydroxylase in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 369:516–524

    Article  PubMed  CAS  Google Scholar 

  • Moreira FA, Grieb M, Lutz B (2009) Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best Pract Res Clin Endocrinol Metab 23:133–144

    Article  PubMed  CAS  Google Scholar 

  • Moreira FA, Lutz B (2008) The endocannabinoid system: emotion, learning and addiction. Addict Biol 13:196–212

    Article  PubMed  CAS  Google Scholar 

  • Morrish AC, Hill MN, Riebe CJ, Gorzalka BB (2009) Protracted cannabinoid administration elicits antidepressant behavioral responses in rats: role of gender and noradrenergic transmission. Physiology Behavior 98:118–124

    Article  PubMed  CAS  Google Scholar 

  • Morrison PD, Zois V, McKeown DA, Lee TD, Holt DW, Powell JF, Kapur S, Murray RM (2009) The acute effects of synthetic intravenous Delta9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med 39:1607–1616

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  PubMed  CAS  Google Scholar 

  • Muntoni AL, Pillolla G, Melis M, Perra S, Gessa GL, Pistis M (2006) Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. Eur J Neurosci 23:2385–2394

    Article  PubMed  Google Scholar 

  • Murray JE, Bevins RA (2010) Cannabinoid conditioned reward and aversion: behavioral and neural processes. ACS Chem Neurosci 1:265–278

    Article  PubMed  CAS  Google Scholar 

  • Negrete JC, Knapp WP, Douglas DE, Smith WB (1986) Cannabis affects the severity of schizophrenic symptoms: results of a clinical survey. Psychol Med 16:515–520

    Article  PubMed  CAS  Google Scholar 

  • Nissen SE, Nicholls SJ, Wolski K, Rodes-Cabau J, Cannon CP, Deanfield JE, Despres JP, Kastelein JJ, Steinhubl SR, Kapadia S, Yasin M, Ruzyllo W, Gaudin C, Job B, Hu B, Bhatt DL, Lincoff AM, Tuzcu EM, Investigators S (2008) Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299:1547–1560

    Article  PubMed  CAS  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17(Suppl 1):S1–12

    Article  PubMed  Google Scholar 

  • Nutt DJ (2006) The role of dopamine and norepinephrine in depression and antidepressant treatment. J Clin Psychiatry 67(Suppl 6):3–8

    PubMed  CAS  Google Scholar 

  • Oropeza VC, Mackie K, Van Bockstaele EJ (2007) Cannabinoid receptors are localized to noradrenergic axon terminals in the rat frontal cortex. Brain Res 1127:36–44

    Article  PubMed  CAS  Google Scholar 

  • Oropeza VC, Page ME, Van Bockstaele EJ (2005) Systemic administration of WIN 55,212-2 increases norepinephrine release in the rat frontal cortex. Brain Res 1046:45–54

    Article  PubMed  CAS  Google Scholar 

  • De Paermentier F, Cheetham SC, Crompton MR, Katona CL, Horton RW (1990) Brain beta-adrenoceptor binding sites in antidepressant-free depressed suicide victims. Brain Res 525:71–77

    Article  PubMed  CAS  Google Scholar 

  • De Paermentier F, Mauger JM, Lowther S, Crompton MR, Katona CL, Horton RW (1997) Brain alpha-adrenoceptors in depressed suicides. Brain Res 757:60–68

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Oropeza VC, Sparks SE, Qian Y, Menko AS, Van Bockstaele EJ (2007) Repeated cannabinoid administration increases indices of noradrenergic activity in rats. Pharmacol Biochem Behav 86:162–168

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Hillard CJ (2003) Cannabinoid-induced Fos expression within A10 dopaminergic neurons. Brain Res 963:15–25

    Article  PubMed  CAS  Google Scholar 

  • Patten SB (1990) Propranolol and depression: evidence from the antihypertensive trials. Can J Psychiatry 35:257–259

    PubMed  CAS  Google Scholar 

  • Patwardhan AM, Jeske NA, Price TJ, Gamper N, Akopian AN, Hargreaves KM (2006) The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci U S A 103:11393–11398

    Article  PubMed  CAS  Google Scholar 

  • Peet M (1994) Induction of mania with selective serotonin re-uptake inhibitors and tricyclic antidepressants. Br J Psychiatry 164:549–550

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525–529

    Article  PubMed  CAS  Google Scholar 

  • Peters JH, McDougall SJ, Fawley JA, Andresen MC (2011) TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus. PloS One 6:e25015

    Article  PubMed  CAS  Google Scholar 

  • Reilly D, Didcott P, Swift W, Hall W (1998) Long-term cannabis use: characteristics of users in an Australian rural area. Addiction 93:837–846

    Article  PubMed  CAS  Google Scholar 

  • Reyes BAS, Van Bockstaele EJ (2006) Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions. Brain Res 1117:69–79

    Article  PubMed  CAS  Google Scholar 

  • Reyes BAS, Rosario JC, Piana EJ, Van Bockstaele EJ (2009) Cannabinoid modulation of cortical adrenergic receptors and transporters. J Neurosci Res 87:3671–3678

    Article  PubMed  CAS  Google Scholar 

  • Reyes BAS, Szot P, Sikkema C, Cathel AM, Kirby LG, Van Bockstaele EJ (2012) Stress-induced sensitization of cortical adrenergic receptors following a history of cannabinoid exposure. Exp Neurol 236:327–335

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SM, Berridge KC (2001) Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J Neurosci 21:3261–3270

    PubMed  CAS  Google Scholar 

  • Reynolds SM, Berridge KC (2002) Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J Neurosci 22:7308–7320

    PubMed  CAS  Google Scholar 

  • Reynolds SM, Berridge KC (2003) Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding. Eur J Neurosci 17:2187–2200

    Article  PubMed  Google Scholar 

  • Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153:1–26

    Article  PubMed  CAS  Google Scholar 

  • Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ (2001) Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 21(1):109–116

    Google Scholar 

  • Sakai N, Yamamoto T (1997) Conditioned taste aversion and c-fos expression in the rat brainstem after administration of various USs. Neuroreport 8:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JF, Krause JE, Cortright DN (2001) The distribution and regulation of vanilloid receptor VR1 and VR1 5′ splice variant RNA expression in rat. Neuroscience 107:373–381

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neuroscience 10:211–223

    Article  CAS  Google Scholar 

  • Scavone JL, Mackie K, Van Bockstaele EJ (2006) Distribution and trafficking of the cannabinoid receptor CB1 in the rat noradrenergic locus coeruleus. Soc Neurosci Abs

    Google Scholar 

  • Scavone JL, Mackie K, Van Bockstaele EJ (2010) Characterization of cannabinoid-1 receptors in the locus coeruleus: relationship with mu-opioid receptors. Brain Res 1312:18–31

    Article  PubMed  CAS  Google Scholar 

  • Seagard JL, Hopp FA, Hillard CJ, Dean C (2005) Effects of endocannabinoids on discharge of baroreceptive NTS neurons. Neurosci Lett 381:334–339

    Article  PubMed  CAS  Google Scholar 

  • Shearman LP, Rosko KM, Fleischer R, Wang J, Xu S, Tong XS, Rocha BA (2003) Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol 14:573–582

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Elmer GI (1998) The neurobiology of opiate reinforcement. Crit Rev Neurobiol 12:267–303

    Article  PubMed  CAS  Google Scholar 

  • Van Sickle MD, Oland LD, Ho W, Hillard CJ, Mackie K, Davison JS, Sharkey KA (2001) Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology 121:767–774

    Article  PubMed  CAS  Google Scholar 

  • Smith RJ, Aston-Jones G (2008) Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Struct Funct 213:43–61

    Article  PubMed  Google Scholar 

  • Solowij N, Stephens RS, Roffman RA, Babor T, Kadden R, Miller M, Christiansen K, McRee B, Vendetti J, Group MTPR (2002) Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA 287:1123–1131

    Article  PubMed  Google Scholar 

  • Southwick SM, Bremner JD, Rasmusson A, Morgan CA 3rd, Arnsten A, Charney DS (1999) Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol Psychiatry 46:1192–1204

    Article  PubMed  CAS  Google Scholar 

  • Southwick SM, Krystal JH, Morgan CA, Johnson D, Nagy LM, Nicolaou A, Heninger GR, Charney DS (1993) Abnormal noradrenergic function in posttraumatic stress disorder. Arch Gen Psychiatry 50:266–274

    Article  PubMed  CAS  Google Scholar 

  • Sternberg DB, Korol D, Novack GD, McGaugh JL (1986) Epinephrine-induced memory facilitation: attenuation by adrenoceptor antagonists. Eur J Pharmacol 129:189–193

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    Article  PubMed  CAS  Google Scholar 

  • Swank MW (2000) Conditioned c-Fos in mouse NTS during expression of a learned taste aversion depends on contextual cues. Brain Res 862:138–144

    Article  PubMed  CAS  Google Scholar 

  • Tondo L, Vázquez G, Baldessarini RJ (2010) Mania associated with antidepressant treatment: comprehensive meta-analytic review. Acta Psychiatr Scand 121:404–414

    Article  PubMed  CAS  Google Scholar 

  • Tully K, Bolshakov VY (2010) Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Mol Brain 3:15

    Article  PubMed  CAS  Google Scholar 

  • Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP, Witkin JM, Nomikos GG (2003) The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacology 138:544–553

    Article  CAS  Google Scholar 

  • Tzavara ET, Perry KW, Rodriguez DE, Bymaster FP, Nomikos GG (2001) The cannabinoid CB(1) receptor antagonist SR141716A increases norepinephrine outflow in the rat anterior hypothalamus. Eur J Pharmacol 426:R3–R4

    Article  PubMed  CAS  Google Scholar 

  • Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L, Blumberg PM (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168

    Article  PubMed  CAS  Google Scholar 

  • Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G (1999) The role of locus coeruleus in the regulation of cognitive performance. Science 283:549–554

    Article  PubMed  CAS  Google Scholar 

  • Vasquez C, Lewis DL (1999) The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J Neurosci 19:9271–9280

    PubMed  CAS  Google Scholar 

  • Velez CN, Johnson J, Cohen P (1989) A longitudinal analysis of selected risk factors for childhood psychopathology. J Am Acad Child Adolesc Psychiatry 28:861–864

    Article  PubMed  CAS  Google Scholar 

  • Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci U S A 104:5181–5186

    Article  PubMed  CAS  Google Scholar 

  • Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81:331–342

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:199–216

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Cao X, Liu C, Liu L (2012) Cannabinoid WIN 55,212-2 inhibits TRPV1 in trigeminal ganglion neurons via PKA and PKC pathways. Neurol Sci 33:79–85

    Article  PubMed  Google Scholar 

  • Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451

    Article  PubMed  CAS  Google Scholar 

  • Witkin JM, Tzavara ET, Davis RJ, Li X, Nomikos GG (2005a) A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders. Trends Pharmacol Sci 26:609–617

    Article  CAS  Google Scholar 

  • Witkin JM, Tzavara ET, Nomikos GG (2005b) A role for cannabinoid CB 1 receptors in mood and anxiety disorders. Behav Pharmacol 16:315–331

    Article  CAS  Google Scholar 

  • Wong ML, Kling MA, Munson PJ, Listwak S, Licinio J, Prolo P, Karp B, McCutcheon IE, Geracioti TD, DeBellis MD, Rice KC, Goldstein DS, Veldhuis JD, Chrousos GP, Oldfield EH, McCann SM, Gold PW (2000) Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci U S A 97:325–330

    Article  PubMed  CAS  Google Scholar 

  • Wozniak M, Schramm N, Limbird L (2000) The noradrenergic receptor subtypestle. In: Bloom F, Kupfer D (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York

    Google Scholar 

  • Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann N Y Acad Sci 877:113–128

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sørgård M, Di Marzo V, Julius D, Högestätt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Franky Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carvalho, A., Van Bockstaele, E. (2013). Anatomical, Biochemical, and Behavioral Evidence for Cannabinoid Modulation of Noradrenergic Circuits: Role of Norepinephrine in Cannabinoid-Induced Aversion. In: Van Bockstaele, E. (eds) Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7940-6_7

Download citation

Publish with us

Policies and ethics