Skip to main content

Involvement of Serotonergic System in Cannabinoid Analgesia

  • Chapter
  • First Online:
  • 1097 Accesses

Abstract

Plant cannabinoids have been used historically as a therapeutic agent in some folk medicine for the treatment of headache, fibromyalgia, and irritable bowel and related conditions in which serotonergic pathways are considered to play a crucial role in pathogenesis and treatment modalities. Serotonergic system has important modulatory role in acute and chronic pain conditions. The analgesic efficacy of cannabinoids in acute and chronic pain appear to be mediated, at least in part, through the regulation of the serotonergic system. In this chapter, we review the interaction between cannabinoids and serotonergic system in the peripheral, spinal and supraspinal sites with special emphasis on serotonin in central sites by which cannabinoid CB1 receptor activation reinforce descending serotonergic pathways to produce antinociceptive effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer MJ, Reeh P, Kunos G, Kress M, Lutz B, Woolf CJ, Kuner R (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10(7):870–879

    PubMed  CAS  Google Scholar 

  • Aimone LD, Jones SL, Gebhart GF (1987) Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain 31(1):123–136

    PubMed  CAS  Google Scholar 

  • Anden NE, Olsson Y (1967) 5-Hydroxytryptamine in normal and sectioned rat sciatic nerve. Acta Pathol Microbiol Scand 70:537–540

    PubMed  CAS  Google Scholar 

  • Babenko V, Svensson P, Graven-Nielsen T, Drewes AM, Jensen TS, Arendt-Nielsen L (2000) Duration and distribution of experimental muscle hyper algesia in humans following combined infusions of serotonin and bradykinin. Brain Res 853(2):275–281

    PubMed  CAS  Google Scholar 

  • Bambico FR, Katz N, Debonnel G, Gobbi G (2007) Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci 27: 11700–11711

    PubMed  CAS  Google Scholar 

  • Bambico FR, Cassano T, Dominguez-Lopez S, Katz N, Walker CD, Piomelli D, Gobbi G (2010) Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology 35(10):2083–2100

    PubMed  CAS  Google Scholar 

  • Bardin L (2011) The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 22:390–404

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    PubMed  CAS  Google Scholar 

  • Bee LA, Dickenson AH (2007) Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states. Neuroscience 147:786–793

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2008) Descending monoaminergic pain modulation: bidirectional control and clinical relevance. Neurology 71:217–221

    PubMed  Google Scholar 

  • Bingel U, Tracey I (2008) Imaging CNS modulation of pain in humans. Physiology (Bethesda) 23:371–380

    Google Scholar 

  • Bonaventure P, Nepomuceno D, Kwok A, Chai W, Langloιs X, Hen R, Stark K, Carruthers N, Lovenberg TW (2002) Reconsideration of 5-hydroxytryptamine (5-HT)7 receptor distribution using [3H]5-carboxamidotryptamine and [3H]8-hydroxy-2-(di-n-propylamino)tetraline: analysis in brain of 5-HT1A knockout and 5-HT1A/1B double-knockout Mice. J Pharmacol Exp Ther 302:240–248

    PubMed  CAS  Google Scholar 

  • Borgelt LM, Franson KL, Nussbaum AM, Wang GS (2013) The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 33:195–209

    PubMed  CAS  Google Scholar 

  • Bravo-Hernández M, Cervantes-Durán C, Pineda-Farias JB, Barragán-Iglesias P, López-Sánchez P, Granados-Soto V (2012) Role of peripheral and spinal 5-HT(3) receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia. Pharmacol Biochem Behav 101(2):246–257

    PubMed  Google Scholar 

  • Braz JM, Basbaum AI (2008) Genetically expressed transneuronal tracer reveals direct and indirect serotonergic descending control circuits. J Comp Neurol 507:1990–2003

    PubMed  Google Scholar 

  • Brenchat A, Zamanillo D, Hamon M, Romero L, Vela JM (2012) Role of peripheral versus spinal 5-HT(7) receptors in the modulation of pain undersensitizing conditions. Eur J Pain 16(1):72–81

    PubMed  CAS  Google Scholar 

  • Brown AG (1982) The dorsal horn of the spinal cord. Q J Exp Physiol 67(2):193–212

    PubMed  CAS  Google Scholar 

  • Buxbaum DM (1972) Analgesic activity of delta 9-tetrahydrocannabinol in the rat and mouse. Psychopharmacol Berlin 25:275–280

    CAS  Google Scholar 

  • Caprioli A, Coccurello R, Rapino C, Di Serio S, Di Tommaso M, Vertechy M, Vacca V, Battista N, Pavone F, Maccarrone M, Borsini F (2012) The novel reversible fatty acid amide hydrolase inhibitor ST4070 increases endocannabinoid brain levels and counteracts neuropathic pain in different animal models. J Pharm Exp Ther 342:188–195

    CAS  Google Scholar 

  • Carley DW, Paviovic S, Janelidze M, Radulovacki M (2002) Functional role for cannabinoids in respiratory stability during sleep. Sleep 25(4):391–398

    PubMed  Google Scholar 

  • Chen YP, Chen SR, Pan HL (2005) Systemic morphine inhibits dorsal horn projection neurons through spinal cholinergic system independent of descending pathways. J Pharmacol Exp Ther 314:611–617

    PubMed  CAS  Google Scholar 

  • Chesher GB, Dahl CJ, Everingham M, Jackson DM, Marchant-Williams H, Starmer GA (1973) The effect of cannabinoids on intestinal motility and their antinociceptive effect in mice. Br J Pharmacol 49(4):588–594

    PubMed  CAS  Google Scholar 

  • Colpaert FC (2006) 5-HT(1A) receptor activation: new molecular and neuroadaptive mechanisms of pain relief. Curr Opin Investig Drugs 7(1):40–47

    PubMed  CAS  Google Scholar 

  • Cui M, Feng Y, McAdoo DJ, Willis WD (1999) Periaqueductal gray stimulation-induced inhibition of nociceptive dorsal horn neurons in rats is associated with the release of norepinephrine, serotonin, and amino acids. Pharmacol Exp Ther 289(2):868–876

    CAS  Google Scholar 

  • Desroches J, Beaulieu P (2010) Opioids and cannabinoids interactions: involvement in pain management. Curr Drug Targets 11(4):462–473

    PubMed  CAS  Google Scholar 

  • Di Marzo V (2008) Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 7:438–455

    PubMed  CAS  Google Scholar 

  • Dogrul A, Seyrek M (2006) Systemic morphine produce antinociception mediated by spinal 5-HT7, but not 5-HT1A and 5-HT2 receptors in the spinal cord. Br J Pharmacol 149(5):498–505

    PubMed  CAS  Google Scholar 

  • Dogrul A, Gardell LR, Ma S, Ossipov MH, Porreca F, Lai J (2002) Knock-down of spinal CB1 receptors produces abnormal pain and elevates spinal dynorphin content in mice. Pain 100:203–209

    PubMed  CAS  Google Scholar 

  • Dogrul A, Gul H, Akar A, Yildiz O, Bilgin F, Guzeldemir E (2003) Topical cannabinoid antinociception: synergy with spinal sites. Pain 105:11–16

    PubMed  CAS  Google Scholar 

  • Dogrul A, Gul H, Yildiz O, Bilgin F, Guzeldemir E (2004) Cannabinoids block tactile allodynia in diabetic mice without attenuation of its antinociceptive effect. Neurosci Lett 368:82–86

    PubMed  CAS  Google Scholar 

  • Dogrul A, Ossipov MH, Porreca F (2009) Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors. Brain 1280:52–59

    CAS  Google Scholar 

  • Dogrul A, Seyrek M, Yalcin B, Ulugol A (2012) Involvement of descending serotonergic and noradrenergic pathways in CB1 receptor-mediated antinociception. Prog Neuropsychopharmacol Biol Psychiatry 38(1):97–105

    PubMed  CAS  Google Scholar 

  • Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, Cifuni SM, Mauler M, Cicko S, Bader M, Idzko M, Bode C, Wagner DD (2012) Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 7 121(6):1008–1015

    PubMed  Google Scholar 

  • Ernberg M, Hedenberg-Magnusson B, Kurita H, Kopp S (2006) Effects of local serotonin administration on pain and microcirculation in the human masseter muscle. J Orofac Pain 20(3):241–248

    PubMed  Google Scholar 

  • Fan P (1995) Cannabinoid agonists inhibit the activation of 5-HT3 receptors in rat nodose ganglion neurons. J Neurophysiol 73(2):907–910

    PubMed  CAS  Google Scholar 

  • Fields HL, Basbaum AI, Heinricher MM (2006) Central nervous system mechanisms of pain modulation. In: McMahon S, Koltzenburg M (eds) Wall and Melzack’s textbook of pain. Elsevier, London, pp 125–142

    Google Scholar 

  • Fields HL, Bry J, Hentall I, Zorman G (1983) The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci 3(12):2545–2552

    Google Scholar 

  • Finn DP, Jhaveri MD, Beckett SRG, Roe CH, Kendall DA, Marsden CA, Chapman V (2003) Effects of periaqueductal grey administration of a cannabinoid agonist on nociceptive and aversive responses in rats. Neuropharmacology 45:594–604

    PubMed  CAS  Google Scholar 

  • Garzón J, la Torre-Madrid E de, Rodràguez-Muñoz M, Vicente-Sánchez A, Sánchez-Blázquez P (2009) Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine. Mol Pain 5:11

    PubMed  Google Scholar 

  • Géranton SM, Tochiki KK, Chiu WW, Stuart SA, Hunt SP (2010) Injury induced activation of extracellular signal regulated kinase (ERK) in the rat rostral ventromedial medulla (RVM) is age dependent and requires the lamina I projection pathways. Mol Pain 6:54

    PubMed  Google Scholar 

  • Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na + current in nociceptors. Proc Natl Acad Sci U S A 93(3):1108–1112

    PubMed  CAS  Google Scholar 

  • Granados-Soto V, Argüelles CF, Rocha-González HI, Godànez-Chaparro B, Flores-Murrieta FJ, Villalón CM (2010) The role of peripheral 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F serotonergic receptors in the reduction of nociception in rats. Neuroscience 165(2):561–568

    PubMed  CAS  Google Scholar 

  • Gu M, Miyoshi K, Dubner R, Guo W, Zou S, Ren K, Noguchi K, Wei F (2011) Spinal 5-HT(3) receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade. J Neurosci 31(36):12823–12836

    PubMed  CAS  Google Scholar 

  • Guindon J, Hohmann AG (2009) The endocannabinoid system and pain. CNS Neurol Disord Drug Targets 8:403–421

    PubMed  CAS  Google Scholar 

  • Gunduz O, Karadag HC, Ulugol A (2011) Synergistic anti-allodynic effects of nociceptin/orphanin FQ and cannabinoid systems in neuropathic mice. Pharmacol Biochem Behav 99:540–544

    PubMed  CAS  Google Scholar 

  • Haj-Dahmane S, Shen RY (2011) Modulation of the serotonin system by endocannabinoid signaling. Neuropharmacology 61(3):414–420

    PubMed  CAS  Google Scholar 

  • Hammond DL, Yaksh TL (1984) Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res 298(2):329–337

    PubMed  CAS  Google Scholar 

  • Hamon M, Bourgoin S (1999) Serotonin and its receptors in pain control. In: Sawynok J, Cowan A (eds) Novel aspects of pain management: opioids and beyond. Wiley-Liss, Inc., New York, pp 203–228

    Google Scholar 

  • Haring M, Marsicano G, Lutz B, Monory K (2007) Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience 146:1212–1219

    PubMed  CAS  Google Scholar 

  • Heinricher MM, Morgan MM, Tortorici V, Fields HL (1994) Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 63:279–288

    PubMed  CAS  Google Scholar 

  • Herzberg U, Eliav E, Bennett GJ, Kopin IJ (1997) The analgesic effect of R(+)-WIN 55,212–2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci Lett 221:157–160

    PubMed  CAS  Google Scholar 

  • Hill MN, Sun JC, Tse MT, Gorzalka BB (2006) Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. Int J Neuropsychopharmacol 9(3):277–286

    PubMed  CAS  Google Scholar 

  • Hohmann AG, Suplita RL (2006) Endocannabinoid mechanisms of pain modulation. AAPS J 8:693–708

    Google Scholar 

  • Hohmann AG, Briley EM, Herkenham M (1999) Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res 822:17–25

    PubMed  CAS  Google Scholar 

  • Huestis MA (2007) Human cannabinoid pharmacokinetics. Chem Biodivers 4(8):1770–1804

    PubMed  CAS  Google Scholar 

  • Ikoma A, Rukwied R, Ständer S, Steinhoff M, Miyachi Y, Schmelz M (2003) Neurophysiology of pruritus: interaction of itch and pain. Arch Dermatol 139(11):1475–1478

    PubMed  Google Scholar 

  • Inyushkin AN, Merkulova NA, Orlova AO, Inyushkina EM (2010) Local GABAergic modulation of the activity of serotoninergic neurons in the nucleus raphe magnus. Neurosci Behav Physiol 40(8):885–893

    PubMed  CAS  Google Scholar 

  • Iwasaki T, Otsuguro KI, Kobayashi T, Ohta T, Ito S (2013) Endogenously released 5-HT inhibits A and C fiber-evoked synaptic transmission in the rat spinal cord by the facilitation of GABA/glycine and 5-HT release via 5-HT(2A) and 5-HT(3) receptors. Eur J Pharmacol doi:10.1016/j.ejphar.2013.01.058

    Google Scholar 

  • Jensen TS, Yaksh TL (1986) Examination of spinal monoamine receptors through which brainstem opiate-sensitive systems act in the rat. Brain Res 363:114–127

    PubMed  CAS  Google Scholar 

  • Jeong CY, Choi JI, Yoon MH (2004) Roles of serotonin receptor subtypes for the antinociception of 5-HT in the spinal cord of rats. Eur J Pharmacol 502(3):205–211

    PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Kato K, Kikuchi S, Konno S, Sekiguchi M (2008) Participation of 5-hydroxytryptamine in pain-related behavior induced by nucleus pulposus applied on the nerve root in rats. Spine 33:1330–1336

    PubMed  Google Scholar 

  • Klumpers LE, Beumer TL, Hasselt JG van, Lipplaa A, Karger LB, Kleinloog HD, Freijer JI, Kam ML de, Gerven JM van (2012) Novel Δ(9) -tetrahydrocannabinol formulation Namisol® has beneficial pharmacokinetics and promising pharmacodynamic effects. Br J Clin Pharmacol 74(1):42–53

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Kikuchi S, Konno S, Kato K, Sekiguchi M (2011) Interaction of 5-hydroxytryptamine and tumor necrosis factor-α to pain-related behavior by nucleus pulposus applied on the nerve root in rats. Spine (Phila Pa 1976) 36(3):210–218

    Google Scholar 

  • Kraft B (2012) Is there any clinically relevant cannabinoid-induced analgesia? Pharmacology 89(5–6):237–246

    PubMed  CAS  Google Scholar 

  • Kwilasz AJ, Negus SS (2012) Dissociable effects of the cannabinoid receptor agonists Δ9-tetrahydrocannabinol and CP55940 on pain-stimulated versus pain-depressed behavior in rats. J Pharmacol Exp Ther 343(2):389–400

    PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (1991) Spinal and supraspinal components of cannabinoid-induced antinociception. J Pharmacol Exp Ther 258:517–523

    PubMed  CAS  Google Scholar 

  • Lichtman AH, Cook SA, Martin BR (1996) Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement. J Pharmacol Exp Ther 276(2):585–593

    PubMed  CAS  Google Scholar 

  • Lischetzki G, Rukwied R, Handwerker HO, Schmelz M (2001) Nociceptor activation and protein extravasation induced by inflammatory mediators in human skin. Eur J Pain 5(1):49–57

    PubMed  CAS  Google Scholar 

  • Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, Burston JJ, Sim-Selley LJ, Lichtman AH, Wiley JL, Cravatt BF (2009) Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci U S A 106:20270–20275

    PubMed  CAS  Google Scholar 

  • Loyd DR, Henry MA, Hargreaves KM (2012) Serotonergic neuromodulation of peripheral nociceptors. Semin Cell Dev Biol 24:51–57

    PubMed  Google Scholar 

  • Mackie K, Stella N (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J 8:E298–E306

    PubMed  Google Scholar 

  • Maione S, Piscitelli F, Gatta L, Vita D, De Petrocellis L, Palazzo E, Novellis V de, Di Marzo V (2011) Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. Br J Pharmacol 162(3):584–596

    PubMed  CAS  Google Scholar 

  • Malan TP Jr, Ibrahim MM, Vanderah TW, Makriyannis A, Porreca F (2002) Inhibition of pain responses by activation of CB2 cannabinoid receptors. Chem Phys Lipids 121:191–200

    PubMed  CAS  Google Scholar 

  • Mallet C, Daulhac L, Bonnefont J, Ledent C, Etienne M, Chapuy E, Libert F, Eschalier A (2008) Endocannabinoid and serotonergic systems are needed for acetaminophen-induced analgesia. Pain 139(1):190–200

    PubMed  CAS  Google Scholar 

  • Manning BH, Martin WJ, Meng ID (2003) The rodent amygdala contributes to the production of cannabinoid-induced antinociception. Neuroscience 120(4):1157–1170

    PubMed  CAS  Google Scholar 

  • Martin WJ, Coffin PO, Attias E, Balinsky M, Tsou K, Walker JM (1999) Anatomical basis for cannabinoid-induced antinociception as revealed by intracerebral microinjections. Brain Res 822(1–2):237–242

    PubMed  CAS  Google Scholar 

  • Martin WJ, Lai NK, Patrick SL, Tsou K, Walker JM (1993) Antinociceptive actions of cannabinoids following intraventricular administration in rats. Brain Res 629(2):300–304

    PubMed  CAS  Google Scholar 

  • Martin WJ, Tsou K, Walker JM (1998) Cannabinoid receptor-mediated inhibition of the rat tail-flick reflex after microinjection into the rostral ventromedial medulla. Neurosci Lett 242:33–36

    PubMed  CAS  Google Scholar 

  • Mato S, Aso E, Castro E, Martàn M, Valverde O, Maldonado R, Pazos A (2007) CB1 knockout mice display impaired functionality of 5-HT1A and 5-HT2A/C receptors. J Neurochem 103:2111–2120

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2009) Effect of the CB(1) receptor antagonists rimonabant and AM251 on the firing rate of dorsal raphe nucleus neurons in rat brain slices. Br J Pharmacol 158(6):1579–1587

    PubMed  CAS  Google Scholar 

  • Meng ID, Johansen JP (2004) Antinociception and modulation of rostral ventromedial medulla neuronal activity by local microinfusion of a cannabinoid receptor agonist. Neuroscience 124(3):685–693

    PubMed  CAS  Google Scholar 

  • Meng ID, Manning BH, Martin WJ, Fields HL (1998) An analgesia circuit activated by cannabinoids. Nature 395:381–383

    PubMed  CAS  Google Scholar 

  • Meuser T, Pietruck C, Gabriel A, Xie GX, Lim KJ, Pierce Palmer P (2002) 5-HT7 receptors are involved in mediating 5-HT-induced activation of rat primary afferent neurons. Life Sci 71:2279–2289

    PubMed  CAS  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    PubMed  CAS  Google Scholar 

  • Mitrirattanakul S, Ramakul N, Guerrero AV, Matsuka Y, Ono T, Iwase H, Mackie K, Faull KF, Spigelman I (2006) Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain 126(1–3):102–114

    PubMed  CAS  Google Scholar 

  • Monhemius R, Azami J, Green DL, Roberts MH (2001) CB1 receptor mediated analgesia from the Nucleus Reticularis Gigantocellularis pars alpha is activated in an animal model of neuropathic pain. Brain Res 908(1):67–74

    PubMed  CAS  Google Scholar 

  • Morgan MM, Whittier KL, Hegarty DM, Aicher SA (2008) Periaqueductal gray neurons project to spinally projecting GABAergic neurons in the rostral ventromedial medulla. Pain 140:376–386

    PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    PubMed  CAS  Google Scholar 

  • Naidu PS, Kinsey SG, Guo TL, Cravatt BF, Lichtman AH (2010) Regulation of inflammatory pain by inhibition of fatty acid amide hydrolase. J Pharmacol Exp Ther 334:182–190

    PubMed  CAS  Google Scholar 

  • Nakajima K, Obata H, Ito N, Goto F, Saito S (2009) The nociceptive mechanism of 5-hydroxytryptamine released into the peripheral tissue in acute inflammatory pain in rats. Eur J Pain 13(5):441–447

    PubMed  CAS  Google Scholar 

  • Nichols DS, Thorn BE, Berntson GG (1989) Opiate and serotonergic mechanisms of stimulation-produced analgesia within the periaqueductal gray. Brain Res Bull 22(4):717–724

    PubMed  CAS  Google Scholar 

  • Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova O, Gasperini C, Pozzilli C, Cefaro L, Comi G, Rossi P, Ambler Z, Stelmasiak Z, Erdmann A, Montalban X, Klimek A, Davies P (2011) A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex(®)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur J Neurol 18:1122–1131

    PubMed  CAS  Google Scholar 

  • Olango WM, Roche M, Ford GK, Harhen B, Finn DP (2012) The endocannabinoid system in the rat dorsolateral periaqueductal grey mediates fear-conditioned analgesia and controls fear expression in the presence of nociceptive tone. Br J Pharmacol 165(8):2549–2560

    PubMed  CAS  Google Scholar 

  • Ossipov MH, Dussor GO, Porreca F (2010) Central modulation of pain. J Clin Invest 120(11):3779–3787

    PubMed  CAS  Google Scholar 

  • Palazzo E, Novellis V de, Petrosino S, Marabese I, Vita D, Giordano C, Di Marzo V, Mangoni GS, Rossi F, Maione S (2006) Neuropathic pain and the endocannabinoid system in the dorsal raphe: pharmacological treatment and interactions with the serotonergic system. Eur J Neurosci 24(7):2011–2020

    PubMed  Google Scholar 

  • Palazzo E, Luongo L, Novellis V de, Berrino L, Rossi F, Maione S (2010) Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol Pain 6:66

    PubMed  Google Scholar 

  • Pertovaara A, Almeida A (2006) Endogenous pain modulation: descending inhibitory systems. In: Cervero F, Jensen TJ (eds) Handbook of clinical neurology—pain, vol. 81 (3rd series), Aminoff MJ, Boller F, Swaab DF (Series eds). Elsevier, London, pp 179–192

    Google Scholar 

  • Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63:569–611

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2012) Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Phil Trans R Soc 367:3353–3363

    CAS  Google Scholar 

  • Petrosino S, Palazzo E, Novellis V de, Bisogno T, Rossi F, Maione S, Di Marzo V (2007) Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology 52(2):415–422

    PubMed  CAS  Google Scholar 

  • Piomelli D, Giuffrida A, Calignano A, Rodriguez de Fonseca F (2000) The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol Sci 21:218–224

    PubMed  CAS  Google Scholar 

  • Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25:319–325

    PubMed  CAS  Google Scholar 

  • Raffa RB, Stone DJ Jr, Hipp SJ (1999) Differential cholera-toxin sensitivity of supraspinal antinociception induced by the cannabinoid agonists delta9-THC, WIN 55,212–2 and anandamide in mice. Neurosci Lett 263(1):29–32

    PubMed  CAS  Google Scholar 

  • Richardson JD (2000) Cannabinoids modulate pain by multiple mechanisms of action. J Pain 1:2–14

    Google Scholar 

  • Richardson JD, Kilo S, Hargreaves KM (1998) Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75:111–119

    PubMed  CAS  Google Scholar 

  • Rivot JP, Chiang CY, Besson JM (1982) Increase of serotonin metabolism within the dorsal horn of the spinal cord during nucleus raphe magnus stimulation, as revealed by in vivo electrochemical detection. Brain Res 238(1):117–126

    PubMed  CAS  Google Scholar 

  • Russo EB (2008) Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett 29(2):192–200

    PubMed  Google Scholar 

  • Rutkowska M, Gliniak H (2009) The influence of ACEA—a selective cannabinoid CB1 receptor agonist on whole blood and platelet-poor plasma serotonin concentrations. Pharmazie 64(9):598–601

    PubMed  CAS  Google Scholar 

  • Sasaki M, Obata H, Kawahara K, Saito S, Goto F (2006) Peripheral 5-HT2A receptor antagonism attenuates primary thermal hyperalgesia and secondary mechanical allodynia after thermal injury in rats. Pain 122(1–2):130–136

    PubMed  CAS  Google Scholar 

  • Scavone JL, Mackie K, Van Bockstaele EJ (2010) Characterization of cannabinoid-1 receptors in the locus coeruleus: relationship with mu-opioid receptors. Brain Res 1312:18–31

    PubMed  CAS  Google Scholar 

  • Schlosburg JE, Kinsey SG, Lichtman AH (2009) Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation. AAPS J 11:39–44

    PubMed  CAS  Google Scholar 

  • Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89(5):2441–2448

    PubMed  CAS  Google Scholar 

  • Seyrek M, Kahraman S, Deveci MS, Yesilyurt O, Dogrul A (2010) Systemic cannabinoids produce CB1-mediated antinociception by activation of descending serotonergic pathways that act upon spinal 5-HT(7) and 5-HT(2A) receptors. Eur J Pharmacol 649(1–3):183–194

    PubMed  CAS  Google Scholar 

  • Smith C, Rahman T, Toohey N, Mazurkiewicz J, Herrick-Davis K, Teitler M (2006) Risperidone irreversibly binds to and inactivates the h5-HT7 serotonin receptor. Mol Pharmacol 70(4):1264–1270

    PubMed  CAS  Google Scholar 

  • Sofia RD, Nalepa SD, Harakal JJ, Vassar HB (1973) Anti-edema and analgesic properties of delta 9-tetrahydrocannabinol (THC). J Pharmacol Exp Ther 186:646–655

    PubMed  CAS  Google Scholar 

  • Sommer C (2010) Serotonin in pain and pain control. In: Müller CP, Jacobs BL (eds) Handbook of the behavioral neurobiology of serotonin, 1st edn. Academic Press, San Francisco

    Google Scholar 

  • Sorkin LS, McAdoo DJ, Willis WD (1993) Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res 618(1):95–108

    PubMed  CAS  Google Scholar 

  • Svizenska I, Dubovy P, Sulcova A (2008) Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structure-a short review. Pharmacol Biochem Behav 90:501–511

    PubMed  CAS  Google Scholar 

  • Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11(12):823–836

    PubMed  CAS  Google Scholar 

  • Tokunaga A, Saika M, Senba E (1998) 5-HT2A receptor subtype is involved in the thermal hyperalgesic mechanism of serotonin in the periphery. Pain 76(3):349–355

    PubMed  CAS  Google Scholar 

  • Toohey N, Klein MT, Knight J, Smith C, Teitler M (2009) Human 5-HT7 receptor-induced inactivation of forskolin-stimulated adenylate cyclase by risperidone, 9-OH-risperidone and other “inactivating antagonists”. Mol Pharmacol 76(3):552–559

    PubMed  CAS  Google Scholar 

  • Ulugol A, Karadag HC, Ipci Y, Tamer M, Dokmeci I (2004) The effect of WIN 55,212–2, a cannabinoid agonist, on tactile allodynia in diabetic rats. Neurosci Lett 371:167–170

    PubMed  CAS  Google Scholar 

  • Ulugol A, Ozyigit F, Yesilyurt O, Dogrul A (2006) The additive antinociceptive interaction between WIN 55,212–2, a cannabinoid agonist, and ketorolac. Anesth Analg 102:443–447

    PubMed  Google Scholar 

  • Vanegas H, Schaible H (2004) Descending control of persistent pain: inhibitory or facilitatory. Brain Res Rev 46:295–309

    PubMed  Google Scholar 

  • Vaughan CW, McGregor IS, Christie MJ (1999) Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro. Br J Pharmacol 127:935–940

    PubMed  CAS  Google Scholar 

  • Vaughan CW, Connor M, Bagley EE, MacDonald CJ (2000) Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Mol Pharmacol 57:288–295

    PubMed  CAS  Google Scholar 

  • Vogel C, Mössner R, Gerlach M, Heinemann T, Murphy DL, Riederer P, Lesch KP, Sommer C (2003) Absence of thermal hyperalgesia in serotonin transporter-deficient mice. J Neurosci 23(2):708–715

    PubMed  CAS  Google Scholar 

  • Volfe Z, Dvilansky A, Nathan I (1985) Cannabinoids block release of serotonin from platelets induced by plasma from migraine patients. Int J Clin Pharmacol Res 5:243–246

    PubMed  CAS  Google Scholar 

  • Wakley AA, Craft RM (2011) Antinociception and sedation following intracerebroventricular administration of Δ9-tetrahydrocannabinol in female vs. male rats. Behav Brain Res 216(1):200–206

    PubMed  CAS  Google Scholar 

  • Walker JM, Hohmann AG (2005) Cannabinoid mechanisms of pain suppression. Handb Exp Pharmacol 168:509–554

    PubMed  CAS  Google Scholar 

  • Walker JM, Huang SM (2002) Cannabinoid analgesia. Pharmacol Therapeut 95:127–135

    CAS  Google Scholar 

  • Wang QP, Nakai Y (1994) The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull 34(6):575–585

    PubMed  CAS  Google Scholar 

  • Wei F, Dubner R, Zou S, Ren K, Bai G, Wei D, Guo W (2010) Molecular depletion of descending serotonin unmasks its novelfacilitatory role in the development of persistent pain. J Neuroscience 30(25):8624–8636

    CAS  Google Scholar 

  • Wei F, Gu M, Chu YX (2012) New tricks for an old slug: descending serotonergic system in pain. Acta Physiologica Sinica 64(5):520–530

    PubMed  CAS  Google Scholar 

  • Whiteside GT, Lee GP, Valenzano KJ (2007) The role of the cannabinoid CB2 receptor in pain transmission and therapeutic potential of small molecule CB2 receptor agonists. Curr Med Chem 14:917–936

    PubMed  CAS  Google Scholar 

  • Wilson-Poe AR, Morgan MM, Aicher SA, Hegarty DM (2012) Distribution of CB1 cannabinoid receptors and their relationship with mu-opioid receptors in the rat periaqueductal gray. Neuroscience 213:191–200

    PubMed  CAS  Google Scholar 

  • Yesilyurt O, Dogrul A, Gul H, Seyrek M, Kusmez O, Ozkan Y, Yildiz O (2003) Topical cannabinoid enhances topical morphine antinociception. Pain 105:303–308

    PubMed  CAS  Google Scholar 

  • Zhang YQ, Gao X, Zhang LM, Wu GC (2000) The release of serotonin in rat spinal dorsal horn and periaqueductal gray following carrageenan inflammation. Neuroreport 11:3539–3543

    PubMed  CAS  Google Scholar 

  • Zogopoulos P, Vasileiou I, Patsouris E, Theocharis SE (2013) The role of endocannabinoids in pain modulation. Fundam Clin Pharmacol 27(1):6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Dogrul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dogrul, A., Seyrek, M., Yalcin, B., Ulugol, A. (2013). Involvement of Serotonergic System in Cannabinoid Analgesia. In: Van Bockstaele, E. (eds) Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7940-6_13

Download citation

Publish with us

Policies and ethics