Skip to main content

Chronic Effects of Cannabinoid Drugs on Monoaminergic Systems and the Role of Endocannabinoids and Cannabinoid Receptors in Human Brain Disorders

  • Chapter
  • First Online:
Book cover Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders

Abstract

The endocannabinoid system and cannabinoid (CB) receptors participate in the regulation of a variety of psychiatric and neurological disorders through a functional coupling with the monoaminergic systems in the brain. Norepinephrine, serotonin (5-HT) and dopamine systems are modulated via inhibitory CB1 receptors by direct or indirect effects. The repeated stimulation of CB1 receptors (and receptor desensitization) can lead to the induction of tolerance on the activity of monoaminergic systems. The chronic administration of CB drugs can also alter the function of presynaptic inhibitory monoamine autoreceptors and heteroreceptors and thus modulate the final effects on these systems. The functional interactions between endocannabinoids, CB receptors, and monoaminergic systems suggest a potential role for CB receptor signaling in the pathophysiology and treatment of various psychiatric and neurological disorders, including drug addiction, which are discussed on evidence from postmortem and living human brain studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceto MD, Scates SM, Martin BB (2001) Spontaneous and precipitated withdrawal with a synthetic cannabinoid, WIN 55212-2. Eur J Pharmacol 416:75–81

    PubMed  CAS  Google Scholar 

  • Alger BE (2002) Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 68:247–286

    PubMed  CAS  Google Scholar 

  • Allen KL, Waldvogel HJ, Glass M, Faull RL (2009) Cannabinoid CB1, GABAA and GABAB receptor subunit changes in the globus pallidus in Huntington’s disease. J Chem Neuroanat 37:266–281

    PubMed  CAS  Google Scholar 

  • Álvaro-Bartolomé M, García-Sevilla JA (2013) Dysregulation of cannabinoid CB1 receptor and associated signaling networks in brains of cocaine addicts and cocaine-treated rodents. Neuroscience, doi: http://dx.doi.org/10.1016/j.neuroscience.2013.05.035

  • Ashton CH, Moore PB (2011) Endocannabinoid system dysfunction in mood and related disorders. Acta Psychiatr Scand 124:250–261

    PubMed  CAS  Google Scholar 

  • Atwood BK, Straiker A, Mackie K (2012) CB2: therapeutic target-in-waiting. Progr Neuropsychopharmacol Biol Psychiatry 38:16–20

    CAS  Google Scholar 

  • Bambico FR, Duranti A, Tontini A, Tarzia G, Gobbi G (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15:1623–1646

    PubMed  CAS  Google Scholar 

  • Bambico FR, Katz N, Debonnel G, Gobbi G (2007) Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci 27:11700–11711

    PubMed  CAS  Google Scholar 

  • Bambico FR, Nguyen NT, Katz N, Gobbi G (2010) Chronic exposure to cannabinoids during adolescence but not during adulthood impairs emotional behavior and monoaminergic neurotransmission. Neurobiol Dis 37:641–655

    PubMed  CAS  Google Scholar 

  • Battista N, Bari M, Tarditi A, Mariotti C, Bachoud-Levi AC, Zuccato C, Finazzi-Agro A, Genitrini S, Peschanski M, Di Donato S, Cattaneo E, Maccarrone M (2007) Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington’s disease mutation in peripheral lymphocytes. Neurobiol Dis 27:108–116

    PubMed  CAS  Google Scholar 

  • Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141

    PubMed  CAS  Google Scholar 

  • Canals M, Milligan G (2008) Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed mu opioid receptors. J Biol Chem 283:11424–11434

    PubMed  CAS  Google Scholar 

  • Carvalho AF, Mackie K, Van Bockstaele EJ (2010) Cannabinoid modulation of limbic forebrain noradrenergic circuitry. Eur J Neurosci 31:286–301

    PubMed  Google Scholar 

  • Carvalho AF, Van Bockstaele EJ (2012) Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Progr Neuropsychopharmacol Biol Psychiatry 38:59–67

    CAS  Google Scholar 

  • Centonze D, Battista N, Rossi S, Mercuri NB, Finazzi-Agrò A, Bernardi G, Calabresi P, Maccarrone M (2004) A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal gabaergic transmission. Neuropsychopharmacology 29:1488–1497

    PubMed  CAS  Google Scholar 

  • Cheer JF, Marsden CA, Kendall DA, Mason R (2000) Lack of response suppression follows repeated ventral tegmental cannabinoid administration: an in vitro electrophysiological study. Neuroscience 99:661–667

    PubMed  CAS  Google Scholar 

  • Choi K, Le T, McGuire J, Xing G, Zhang L, Li H, Parker CC, Johnson LR, Ursano RJ (2012) Expression pattern of the cannabinoid receptor genes in the frontal cortex of mood disorder patients and mice selectively bred for high and low fear. J Psychiatric Res 46:882–889

    Google Scholar 

  • Dalton VS, Long LE, Weickert CS, Zavitsanou K (2011) Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex. Neuropsychopharmacol 36:1620–1630

    CAS  Google Scholar 

  • De Marchi N, De Petrocellis L, Orlando P, Daniele F, Fezza F, Di Marzo V (2003) Endocannabinoid signaling in the blood of patients with schizophrenia. Lipids Health Dis 2:5

    PubMed  Google Scholar 

  • Dean B, Sundram S, Brabury R, Scarr E, Copolov D (2001) Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 103:9–15

    PubMed  CAS  Google Scholar 

  • Deng C, Han M, Huang XF (2007) No changes in densities of cannabinoid receptors in the superior temporal gyrus in schizophrenia. Neurosci Bull 23:341–347

    PubMed  CAS  Google Scholar 

  • DiFiglia M (1990) Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13:286–289

    PubMed  CAS  Google Scholar 

  • Dlugos A, Childs E, Stuhr KL, Hillard CJ, de Wit H (2012) Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacol 37:2416–2427

    CAS  Google Scholar 

  • Eggan SM, Hashimoto T, Lewis DA (2008) Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. Arch Gen Psychiatry 65:772–784

    PubMed  Google Scholar 

  • Eggan SM, Stoyak SR, Verrico CD, Lewis DA (2010) Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: comparison of schizophrenia and major depressive disorder. Neuropsychopharmacology 35:2060–2071

    PubMed  CAS  Google Scholar 

  • Esteban S, García-Sevilla JA (2012) Effects induced by cannabinoids on monoaminergic systems in the brain and their implications for psychiatric disorders. Progr Neuropsychopharmacol Biol Psychiatry 38:78–87

    CAS  Google Scholar 

  • Esteban S, Lladó J, García-Sevilla JA (1996) a2-Autoreceptors and a2-heteroreceptors modulating tyrosine and tryptophan hydroxylase activity in the rat brain in vivo: an investigation into the a2-adrenoceptor subtypes. Naunyn-Schmiedebergs Arch Pharmacol 353:391–399

    PubMed  CAS  Google Scholar 

  • Fattore L, Spano MS, Melis V, Fadda P, Fratta W (2011) Differential effect of opioid and cannabinoid receptor blockade on heroin-seeking reinstatement and cannabinoid substitution in heroin-abstinent rats. Br J Pharmacol 163:1550–1562

    PubMed  CAS  Google Scholar 

  • Farkas S, Nagy K, Jia Z, Harkany T, Palkovits M, Donohou SR, Pike VW, Halldin C, Mathe D, Csiba L, Gulyas B (2012a) The decrease of dopamine D2/D3 receptor densities in the putamen and nucleus caudatus goes parallel with maintained levels of CB1 cannabinoid receptors in Parkinson’s disease: a preliminary autoradiographic study with the selective dopamine D2/D3 antagonist [3H]raclopride and the novel CB1 inverse agonist [125I]SD7015. Brain Res Bull 87:504–510

    CAS  Google Scholar 

  • Farkas S, Nagy K, Palkovits M, Kovacs GG, Jia Z, Donohue S, Pike V, Halldin C, Mathe D, Harkany T, Gulyas B, Csiba L (2012b) [125I]SD7015 reveals fine modalities of CB1 cannabinoid receptor density in the prefrontal cortex during progression of Alzheimer’s disease. Neurochem Int 60:286–291

    CAS  Google Scholar 

  • Fernández-Ruiz J, Pazos MR, García-Arencibia M, Sagredo O, Ramos JA (2008) Role of CB2 receptors in neuroprotective effects of cannabinoids. Mol Cell Endocrinol 286:S91–S96

    PubMed  Google Scholar 

  • Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59:360–417

    PubMed  CAS  Google Scholar 

  • Gifford AN, Ashby CR Jr (1996) Electrically evoked acetylcholine release from hippocampal slices is inhibited by the cannabinoid receptor agonist, WIN 552122–2, and is potentiated by the cannabinoid antagonist, SR 141716A. J Pharmacol Exp Ther 277:1431–1436

    PubMed  CAS  Google Scholar 

  • Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J, Klosterkötter J, Piomelli D (2004) Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29:2108–2114

    PubMed  CAS  Google Scholar 

  • Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519

    PubMed  CAS  Google Scholar 

  • Glass M, Faull RL, Dragunow M (1993) Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 56:523–527

    PubMed  CAS  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M et al (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci U S A 102:18620–18625

    PubMed  CAS  Google Scholar 

  • González S, Fernández-Ruiz J, Sparpaglione V, Parolaro D, Ramos JA (2002) Chronic exposure to morphine, cocaine or ethanol in rats produced different effects in brain cannabinoid CB1 receptor binding and mRNA levels. Drug Alcohol Depend 66:77–84

    PubMed  Google Scholar 

  • Gorzalka BB, Hill MN (2011) Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants. Progr Neuropsychopharmacol Biol Psychiatry 35:1575–1585

    CAS  Google Scholar 

  • Griebel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57:261–267

    PubMed  CAS  Google Scholar 

  • Häring M, Marsicano G, Lutz B, Monory K (2007) Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience 146:1212–1219

    PubMed  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13:127–137

    PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005a) Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 16:333–352

    CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005b) Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur Neuropsychopharmacol 15:593–599

    CAS  Google Scholar 

  • Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ (2009) Circulating endocannabinoids and N-acylethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34:1257–1262

    PubMed  CAS  Google Scholar 

  • Hill MN, Miller GE, Ho WSV, Gorzalka BB, Hillard CJ (2008) Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry 41:48–53

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Bloom AS (1982) Delta 9-tetrahydrocannabinol-induced changes in beta-adrenergic receptor binding in mouse cerebral cortex. Brain Res 235:370–377

    PubMed  CAS  Google Scholar 

  • Hohmann AG, Herkenham M (2000) Localization of cannabinoid CB(1) receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study. Synapse 37:71–80

    PubMed  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA et al (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    PubMed  CAS  Google Scholar 

  • Howlett AC, Reggio PH, Childers SR, Hampson RE, Ulloa NM, Deutsch DG (2011) Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 163:1329–1343

    PubMed  CAS  Google Scholar 

  • Hruba L, Ginsburg BC, McMahon LR (2012) Apparent inverse relationship between cannabinoid agonist efficacy and tolerance/cross-tolerance produced by Δ9-tetrahydrocannabinol treatment in rhesus monkeys. J Pharmacol Exp Ther 342:843–849

    PubMed  CAS  Google Scholar 

  • Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB et al (2004) Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 9:184–190

    PubMed  CAS  Google Scholar 

  • Hurley MJ, Mash DC, Jenner P (2003) Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm 110:1279–1288

    PubMed  CAS  Google Scholar 

  • Hutcheson DM, Tzavara ET, Smadja C, Valjent E, Roques BP, Hanoune J, Maldonado R (1998) Behavioral and biochemical evidence for signs of abstinence in mice chronically treated with delta-9-tetrahydrocannabinol. Br J Pharmacol 125:1567–1577

    PubMed  CAS  Google Scholar 

  • Hutchison KE, Haughey H, Niculescu M, Schacht J, Kaiser A, Stitzel J, Horton WJ, Filbey F (2008) The incentive salience of alcohol: translating the effects of genetic variant in CNR1. Arch Gen Psychiatry 65:841–850

    PubMed  Google Scholar 

  • Ichikawa J, Meltzer HY (2000) The effect of serotonin1A receptor agonism on antipsychotic drug-induced dopamine release in rat striatum and nucleus accumbens. Brain Res 858:252–263

    PubMed  CAS  Google Scholar 

  • Jenko KJ, Hirvonen J, Henter ID, Anderson KB, Zoghbi SS, Hyde TM, Deep-Soboslay A, Innis RB, Kleinman JE (2012) Binding of a tritiated inverse agonist to cannabinoid CB1 receptors is increased in patients with schizophrenia. Schizophr Res 141:185–188

    PubMed  Google Scholar 

  • Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K et al (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    PubMed  CAS  Google Scholar 

  • Koethe D, Giuffrida A, Schreiber D, Hellmich M, Schultze-Lutter F, Ruhrmann S, Klosterkötter J, Piomelli D, Leweke FM (2009) Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. Br J Psychiatry 194:371–372

    PubMed  Google Scholar 

  • Koethe D, Llenos IC, Dulay JR, Hoyer C, Torrey EF, Leweke FM, Weis S (2007) Expression of CB1 cannabinoid receptor in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression. J Neural Transm 114:1055–1063

    PubMed  CAS  Google Scholar 

  • Koppel J, Bradshaw H, Goldberg TE, Khalili H, Marambaud P, Walker MJ, Pazos M, Gordon ML, Christen E, Davies P (2009) Endocannabinoids in Alzheimer’s disease and their impact on normative cognitive performance: a case-control and cohort study. Lipids Health Dis 8:2

    PubMed  Google Scholar 

  • Lastres-Becker I, Cebeira M, de Ceballos ML, Zeng BY, Jenner P, Ramos JA, Fernandez-Ruiz JJ (2001) Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur J Neurosci 14:1827–1832

    PubMed  CAS  Google Scholar 

  • Lazary J, Juhasz G, Hunyady L, Bagdy G (2011) Personalized medicine can pave the way for the safe use of CB1 receptor antagonists. Trends Pharmacol Sci 32:270–280

    PubMed  CAS  Google Scholar 

  • Lee JH, Agacinski G, Williams JH, Wilcock GK, Esiri MM, Francis PT, Wong PT, Chen CP, Lai MK (2010) Intact cannabinoid CB1 receptors in the Alzheimer’s disease cortex. Neurochem Int 57:985–989

    PubMed  CAS  Google Scholar 

  • Lehtonen M, Storvik M, Tupala E, Hyytia P, Tiihonen J, Callaway JC (2010) Endogenous cannabinoids in post-mortem brains of Cloninger type 1 and 2 alcoholics. Eur Neuropsychopharmacol 20:245–252

    PubMed  CAS  Google Scholar 

  • Leterrier C, Bonnard D, Carrel D, Rossier J, Lenkei Z (2004) Constitutive endocytic cycle of the CB1 cannabinoid receptor. J Biol Chem 279:36013–36021

    PubMed  CAS  Google Scholar 

  • Leweke FM, Giuffrida A, Koethe D, Schreiber D, Nolden BM, Kranaster L, Neatby MA, Schneider M, Gerth CW, Hellmich M, Klosterkötter J, Piomelli D (2007) Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use. Schiz Res 94:29–36

    Google Scholar 

  • Leweke FM, Giuffrida A, Wurster U, Emrich HM, Piomelli D (1999) Elevated endogenous cannabinoids in schizophrenia. Neuroreport 10:1665–1667

    PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (2005) Cannabinoid tolerance and dependence. Handb Exp Pharmacol 168:691–717

    PubMed  CAS  Google Scholar 

  • Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 29:225–232

    PubMed  CAS  Google Scholar 

  • Mathers FM, Ghodse AH (1992) Cannabis and psychotic illness. Br J Psychiatry 161:648–653

    PubMed  CAS  Google Scholar 

  • Mato S, Vidal R, Castro E, Díaz A, Pazos A, Valdizán EM (2010) Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine1A receptor-dependent mechanisms. Mol Pharmacol 77:424–434

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Bonner TI, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327:535–550

    PubMed  CAS  Google Scholar 

  • McLaughlin RJ, Hill MN, Bambico FR, Stuhr KL, Gobbi G, Hillard CJ, Gorzalka BB (2012) Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway. Eur. Neuropsychopharamcol 22:664–671

    CAS  Google Scholar 

  • Mechoulam R, Parker LA (2013) The endocannabinoid system and the brain. Annu Rev Psychol 64:6.1–6.27

    Google Scholar 

  • Miyamoto S, Duncan GE, Mar CE, Lieberman JA (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10:79–104

    PubMed  CAS  Google Scholar 

  • Moranta D, Esteban S, García-Sevilla JA (2009) Chronic treatment and withdrawal of the cannabinoid agonist WIN55,212–2 modulate the sensitivity of presynaptic receptors involved in the regulation of monoamine syntheses in rat brain. Naunyn Schmiedebergs Arch Pharmacol 379:61–72

    PubMed  CAS  Google Scholar 

  • Morera-Herreras T, Ruiz-Ortega JA, Gómez-Urquijo S, Ugedo L (2008) Involvement of subthalamic nucleus in the stimulatory effect of Δ9-tetrahydrocannabinol on dopaminergic neurons. Neuroscience 151:817–823

    PubMed  CAS  Google Scholar 

  • Muguruza C, Lehtonen M, Aaltonen N, Arrieta J, Morentin B, Meana JJ, Callado LF (2012) Altered levels of endocannabinoids in post-mortem human brain of schizophrenic subjects. Int J Neuropsychopharmacol 15:126–127

    Google Scholar 

  • Nakazi M, Bauer U, Nickel T, Kathmann M, Schlicker E (2000) Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn-Schmiedebergs Arch Pharmacol 361:19–24

    PubMed  CAS  Google Scholar 

  • Newell KA, Deng C, Huang XF (2006) Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res 172:556–560

    PubMed  CAS  Google Scholar 

  • Nissen SE, Nicholls SJ, Wolski K, Rodés-Cabau J, Cannon CP, Deanfield JE et al (2008) Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299:1547–1560

    PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gu S, Liu Q-R (2012) CNS effects of CB2 cannabinoid receptors beyond neuro-immuno-cannabinoid activity. J Psychopharmacol 26:92–103

    PubMed  CAS  Google Scholar 

  • Oropeza VC, Mackie K, Van Bockstaele EJ (2007) Cannabinoid receptors are localized to noradrenergic axon terminals in the rat frontal cortex. Brain Res 1127:36–44

    PubMed  CAS  Google Scholar 

  • Oropeza VC, Page ME, Van Bockstaele EJ (2005) Systemic administration of WIN 55,212–2 increases norepinephrine release in the rat frontal cortex. Brain Res 1046:45–54

    PubMed  CAS  Google Scholar 

  • Ortega-Alvaro A, Aracil-Fernández A, García-Gutiérrez AS, Navarrete F, Manzanares J (2011) Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology 36:1489–1504

    PubMed  CAS  Google Scholar 

  • Page ME, Oropeza VC, Sparks SE, Qian Y, Menko AS, Van Bockstaele EJ (2007) Repeated cannabinoid administration increases indices of noradrenergic activity in rats. Pharmacol Biochem Behav 86:162–168

    PubMed  CAS  Google Scholar 

  • Parolaro D, Realini N, Vigano D, Guidali C, Rubino T (2010) The endocannabinoid system and psychiatric disorders. Exp Neurol 224:3–14

    PubMed  CAS  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    PubMed  CAS  Google Scholar 

  • Pisani A, Fezza F, Galati S, Battista N, Napolitano S, Finazzi-Agro A, Bernardi G, Brusa L, Pierantozzi M, Stanzione P, Maccarrone M (2005) High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson’s disease patients. Ann Neurol 57:777–779

    PubMed  Google Scholar 

  • Pisani V, Moschella V, Bari M, Fezza F, Galati S, Bernardi G, Stanzione P, Pisani A, Maccarrone M (2010) Dynamic changes of anandamide in the cerebrospinal fluid of Parkinson’s disease patients. Mov Disord 25:920–924

    PubMed  Google Scholar 

  • Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25:1904–1913

    PubMed  CAS  Google Scholar 

  • Richfield EK, Herkenham M (1994) Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol 36:577–584

    PubMed  CAS  Google Scholar 

  • Scavone JL, Mackie K, Van Bockstaele EJ (2010) Characterization of cannabinoid-1 receptors in the locus coeruleus: relationship with mu-opioid receptors. Brain Res 1312:18–31

    PubMed  CAS  Google Scholar 

  • Scavone JL, Sterling RC, Van Bockstaele EJ (2013) Cannabinoid and opioid interactions: implications for opiate dependence and withdrawal. Neuroscience, http://dx.doi.org/10.1016/j.neuroscience2013.04.034

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572

    PubMed  CAS  Google Scholar 

  • Sim-Selley LJ (2003) Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol 15:91–119

    PubMed  CAS  Google Scholar 

  • Starke K (2001) Presynaptic autoreceptors in the third decade: focus on α2-adrenoceptors. J Neurochem 78:685–693

    PubMed  CAS  Google Scholar 

  • Urigüen L, García-Fuster J, Callado LF, Morentin B, La Harpe R, Casadó V, Lluis C, Franco R, García-Sevilla JA, Meana JJ (2009) Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacol (Berl) 206:313–324

    Google Scholar 

  • Valdizán EM, Mato S, González-Maeso J, Rodríguez-Puertas R, Meana JJ, Sallés J, et al (2011) Functionality of cannabinoid receptors in the prefrontal cortex of major depression suicide victims: influence of antidepressant treatment at the time of death. XIV Congreso Nacional Sociedad Española de Neurociencia (SENC), Salamanca, September 2011. Abstract P-105

    Google Scholar 

  • Valverde O, Torrens M (2012) CB1 receptor-deficient mice as a model for depression. Neuroscience 204:193–206

    PubMed  CAS  Google Scholar 

  • Van Laere K, Casteels C, Dhollander I, Goffin K, Grachev I, Bormans G, Vandenberghe W (2010) Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med 51:1413–1417

    PubMed  CAS  Google Scholar 

  • Van Laere K, Casteels C, Lunskens S, Goffin K, Grachev ID, Bormans G, Vandenberghe W (2012) Regional changes in type 1 cannabinoid receptor availability in Parkinson’s disease in vivo. Neurobiol aging 33:621–628

    Google Scholar 

  • Vaughan CW, Christie MJ (2005) Retrograde signaling by endocannabinoids. Handb Exp Pharmacol 168:367–383

    PubMed  CAS  Google Scholar 

  • Villares J (2007) Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain. Neuroscience 145:323–334

    PubMed  CAS  Google Scholar 

  • Vinod KY, Arango V, Xie S, Kassir SA, Mann JJ, Cooper TB et al (2005) Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signaling in the prefrontal cortex of alcoholic suicide victims. Biol Psychiatry 57:480–486

    PubMed  CAS  Google Scholar 

  • Vinod KY, Kassir SA, Hungund BL, Cooper TB, Mann JJ, Arango V (2010) Selective alterations of the CB1 receptors and the fatty acid amide hydrolase in the ventral striatum of alcoholics and suicides. J Psychiatr Res 44:591–597

    PubMed  Google Scholar 

  • Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63:637–652

    PubMed  CAS  Google Scholar 

  • Wong DF, Kuwabara H, Horti AG, Raymont V, Brasic J, Guevara M, Ye W, Dannals RF, Ravert HT, Nandi A, Rahmin A, Ming JE, Grachev I, Roy C, Cascella N (2010) Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage 52:1505–1513

    PubMed  CAS  Google Scholar 

  • Wu X, French ED (2000) Effects of chronic D9-tetrahydrocannabinol on rat midbrain dopamine neurons: an electrophysiological assessment. Neuropharmacology 39:391–398

    PubMed  CAS  Google Scholar 

  • Zavitsanou K, Garrick T, Huang XF (2004) Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 28:355–360

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The studies performed in the authors’ laboratories were funded by grants SAF2009-08460 (MINECO/FEDER), Basque Government (IT199-07, IT616-13, SAIOTEK S-PE12UN033) and the University of the Basque Country (UFI 11/35) to JJMM and LFC, and grants SAF2004-03685 and SAF2008-01311 (MINECO/FEDER) and 2007I032 (Plan Nacional sobre Drogas) to JAGS. The studies were also funded by RETICS-RTA (RD12/0028/0011; Instituto de Salud Carlos III, MINECO/FEDER) to JAGS. J.A. García-Sevilla is a member of the Institut d’Estudis Catalans (Barcelona, Catalonia, Spain).

Author Contributions

The authors jointly wrote the manuscript. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús A. García-Sevilla MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Urigüen, L., Esteban, S., Callado, L., Álvaro-Bartolomé, M., Meana, J., García-Sevilla, J. (2013). Chronic Effects of Cannabinoid Drugs on Monoaminergic Systems and the Role of Endocannabinoids and Cannabinoid Receptors in Human Brain Disorders. In: Van Bockstaele, E. (eds) Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7940-6_10

Download citation

Publish with us

Policies and ethics