Skip to main content

Antibiotics in Treatment of Periprosthetic Joint Infections

  • Chapter
  • First Online:
  • 1699 Accesses

Abstract

The infection rate after joint arthroplasty is about 1–3 % in spite of correct surgical techniques, aseptic measures, and antibiotic prophylaxis (Clin Infect Dis 46:1009–1014, 2008). Taking into account the increasing number of arthroplasties performed each year in the developed world; a parallel increase in the number of prosthetic joint infections is expected. The management of these infections is complex due to the progressive increase in antibiotic resistant bacteria and the ability of bacteria to grow forming biofilms on the implant surface. The aim of the present chapter is to provide a general knowledge about antibacterial agents and the main characteristics of available antimicrobial families for treating the most frequent pathogens producing prosthetic joint infections. The description of each group of antibiotics includes the following aspects: mechanism of action, antibacterial spectrum, pharmacodynamic index predicting the efficacy, concentration achieved in bone, recommended dosages and way of administration, and the most relevant adverse events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Soriano A, Bori G, García-Ramiro S, et al. Timing of antibiotic prophylaxis for primary total knee arthroplasty performed during ischemia. Clin Infect Dis. 2008;46:1009–14.

    Article  PubMed  CAS  Google Scholar 

  2. Stoodley P, Nistico L, Johnson S, et al. Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. J Bone Joint Surg Am. 2008;90:1751–8.

    Article  PubMed  Google Scholar 

  3. Tuchscherr L, Medina E, Hussain M, et al. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med. 2011;3:129–41.

    Article  PubMed  CAS  Google Scholar 

  4. Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis. 2006;43:961–7.

    Article  PubMed  Google Scholar 

  5. Stevens DL, Ma Y, Salmi DB, McIndoo E, Wallace RJ, Bryant AE. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Infect Dis. 2007;195:202–11.

    Article  PubMed  CAS  Google Scholar 

  6. Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17:479–501.

    Article  PubMed  Google Scholar 

  7. Landersdorfer CB, Bulitta JB, Kinzig M, Holzgrabe U, Sörgel F. Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin Pharmacokinet. 2009;48:89–124.

    Article  PubMed  CAS  Google Scholar 

  8. Fitzgerald RH. Antibiotic distribution in normal and osteomyelitic bone. Orthop Clin North Am. 1984;15:537–46.

    PubMed  Google Scholar 

  9. Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364:369–79.

    Article  PubMed  CAS  Google Scholar 

  10. Wagner C, Sauermann R, Joukhadar C. Principles of antibiotic penetration into abscess fluid. Pharmacology. 2006;78:1–10.

    Article  PubMed  CAS  Google Scholar 

  11. Kernodle DS, Classen DC, Burke JP, Kaiser AB. Failure of cephalosporins to prevent Staphylococcus aureus surgical wound infections. JAMA. 1990;263:961–6.

    Article  PubMed  CAS  Google Scholar 

  12. Nannini EC, Stryjewski ME, Singh KV, et al. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: frequency and possible cause of cefazolin treatment failure. Antimicrob Agents Chemother. 2009;53:3437–41.

    Article  PubMed  CAS  Google Scholar 

  13. Zeller V, Durand F, Kitzis M-D, et al. Continuous cefazolin infusion to treat bone and joint infections: clinical efficacy, feasibility, safety, and serum and bone concentrations. Antimicrob Agents Chemother. 2009;53:883–7.

    Article  PubMed  CAS  Google Scholar 

  14. Leder K, Turnidge JD, Korman TM, Grayson ML. The clinical efficacy of continuous-infusion flucloxacillin in serious staphylococcal sepsis. J Antimicrob Chemother. 1999;43:113–8.

    Article  PubMed  CAS  Google Scholar 

  15. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37:1771–6.

    PubMed  CAS  Google Scholar 

  16. Tanaka G, Shigeta M, Komatsuzawa H, Sugai M, Suginaka H, Usui T. Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: beta-lactams and fluoroquinolones. Chemotherapy. 1999;45:28–36.

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen HA, Denis O, Vergison A, et al. Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: pharmacodynamic evaluation and comparison with isogenic normal-phenotype and revertant strains. Antimicrob Agents Chemother. 2009;53:1434–42.

    Article  PubMed  CAS  Google Scholar 

  18. Tice AD, Hoaglund PA, Shoultz DA. Risk factors and treatment outcomes in osteomyelitis. J Antimicrob Chemother. 2003;51:1261–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis. 2011;52:975–81.

    Article  PubMed  CAS  Google Scholar 

  20. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43:925–42.

    Article  PubMed  CAS  Google Scholar 

  21. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66:82–98.

    Article  PubMed  CAS  Google Scholar 

  22. Van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis. 2012;54:755–71.

    Article  PubMed  Google Scholar 

  23. Graziani AL, Lawson LA, Gibson GA, Steinberg MA, McGregor RR. Vancomycin concentrations in infected and noninfected human bone. Antimicrob Agents Chemother. 1988;32:1320–2.

    Article  PubMed  CAS  Google Scholar 

  24. Monzón M, Oteiza C, Leiva J, Amorena B. Synergy of different antibiotic combinations in biofilms of Staphylococcus epidermidis. J Antimicrob Chemother. 2001;48:793–801.

    Article  PubMed  Google Scholar 

  25. Sauermann R, Rothenburger M, Graninger W, Joukhadar C. Daptomycin: a review 4 years after first approval. Pharmacology. 2008;81:79–91.

    Article  PubMed  CAS  Google Scholar 

  26. Lamp KC, Friedrich LV, Mendez-Vigo L, Russo R. Clinical experience with daptomycin for the treatment of patients with osteomyelitis. Am J Med. 2007;120:S13–20.

    Article  PubMed  CAS  Google Scholar 

  27. Rao N, Regalla DM. Uncertain efficacy of daptomycin for prosthetic joint infections: a prospective case series. Clin Orthop Relat Res. 2006;451:34–7.

    Article  PubMed  Google Scholar 

  28. Byren I, Rege S, Campanaro E, et al. Safety and efficacy of daptomycin vs. standard-of-care therapy for the management of patients with osteomyelitis associated with prosthetic devices undergoing two-stage revision arthroplasty: a randomized controlled trial. Antimicrob Agents Chemother. 2012;56:5626–32.

    Article  PubMed  CAS  Google Scholar 

  29. John A-K, Baldoni D, Haschke M, et al. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009;53:2719–24.

    Article  PubMed  CAS  Google Scholar 

  30. Saleh Mghir A, Muller-Serieys C, Dinh A, Massias L, Crémieux AC. Rifampin adjunction is crucial to optimizing daptomycin efficacy against methicillin-resistant Staphylococcus aureus rabbit prosthetic joint infection. Antimicrob Agents Chemother. 2011;55:4589–93.

    Article  PubMed  CAS  Google Scholar 

  31. Traunmüller F, Schintler MV, Metzler J, et al. Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J Antimicrob Chemother. 2010;65:1252–7.

    Article  PubMed  Google Scholar 

  32. Edmiston CE, Goheen MP, Seabrook GR, et al. Impact of selective antimicrobial agents on staphylococcal adherence to biomedical devices. Am J Surg. 2006;192:344–54.

    Article  PubMed  CAS  Google Scholar 

  33. Mascio CTM, Alder JD, Silverman JA. Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother. 2007;51:4255–60.

    Article  PubMed  CAS  Google Scholar 

  34. Begic D, Von Eiff C, Tsuji BT. Daptomycin pharmacodynamics against Staphylococcus aureus hemB mutants displaying the small colony variant phenotype. J Antimicrob Chemother. 2009;63:977–81.

    Article  PubMed  CAS  Google Scholar 

  35. Baltch AL, Ritz WJ, Bopp LH, Michelsen P, Smith RP. Activities of daptomycin and comparative antimicrobials, singly and in combination, against extracellular and intracellular Staphylococcus aureus and its stable small-colony variant in human monocyte-derived macrophages and in broth. Antimicrob Agents Chemother. 2008;52:1829–33.

    Article  PubMed  CAS  Google Scholar 

  36. Proctor RA, von Eiff C, Kahl BC, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006;4:295–305.

    Article  PubMed  CAS  Google Scholar 

  37. El Helou OC, Berbari EF, Marculescu CE, et al. Outcome of enterococcal prosthetic joint infection: is combination systemic therapy superior to monotherapy? Clin Infect Dis. 2008;47:903–9.

    Article  PubMed  Google Scholar 

  38. Levin TP, Suh B, Axelrod P, Truant AL, Fekete T. Potential clindamycin resistance in clindamycin-susceptible, erythromycin-resistant Staphylococcus aureus: report of a clinical failure. Antimicrob Agents Chemother. 2005;49:1222–4.

    Article  PubMed  CAS  Google Scholar 

  39. Mader JT, Adams K, Morrison L. Comparative evaluation of cefazolin and clindamycin in the treatment of experimental Staphylococcus aureus osteomyelitis in rabbits. Antimicrob Agents Chemother. 1989;33:1760–4.

    Article  PubMed  CAS  Google Scholar 

  40. Czekaj J, Dinh A, Moldovan A, et al. Efficacy of a combined oral clindamycin–rifampicin regimen for therapy of staphylococcal osteoarticular infections. Scand J Infect Dis. 2011;43:962–7.

    Article  PubMed  CAS  Google Scholar 

  41. Zeller V, Dzeing-Ella A, Kitzis M-D, Ziza J-M, Mamoudy P, Desplaces N. Continuous clindamycin infusion, an innovative approach to treating bone and joint infections. Antimicrob Agents Chemother. 2010;54:88–92.

    Article  PubMed  CAS  Google Scholar 

  42. Raad I, Hanna H, Jiang Y, et al. Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrob Agents Chemother. 2007;51:1656–60.

    Article  PubMed  CAS  Google Scholar 

  43. Vaudaux P, Fleury B, Gjinovci A, Huggler E, Tangomo-Bento M, Lew DP. Comparison of tigecycline and vancomycin for treatment of experimental foreign-body infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53:3150–2.

    Article  PubMed  CAS  Google Scholar 

  44. Pavoni GL, Giannella M, Falcone M, et al. Conservative medical therapy of prosthetic joint infections: retrospective analysis of an 8-year experience. Clin Microbiol Infect. 2004;10:831–7.

    Article  PubMed  CAS  Google Scholar 

  45. Zimmerli W, Frei R, Widmer AF, Rajacic Z. Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J Antimicrob Chemother. 1994;33:959–67.

    Article  PubMed  CAS  Google Scholar 

  46. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. JAMA. 1998;279:1537–41.

    Article  PubMed  CAS  Google Scholar 

  47. Lora-Tamayo J, Murillo O, Iribarren JA, et al. A large multicenter study of methicillin susceptible- and methicillin resistant-Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis. 2013;56:182–94.

    Article  PubMed  Google Scholar 

  48. Ferry T, Uçkay I, Vaudaux P, et al. Risk factors for treatment failure in orthopedic device-related methicillin-resistant Staphylococcus aureus infection. Eur J Clin Microbiol Infect Dis. 2010;29:171–80.

    Article  PubMed  CAS  Google Scholar 

  49. Rao N, Hamilton CW. Efficacy and safety of linezolid for Gram-positive orthopedic infections: a prospective case series. Diagn Microbiol Infect Dis. 2007;59:173–9.

    Article  PubMed  CAS  Google Scholar 

  50. Oussedik SIS, Haddad FS. The use of linezolid in the treatment of infected total joint arthroplasty. J Arthroplasty. 2008;23:273–8.

    Article  PubMed  Google Scholar 

  51. Senneville E, Legout L, Valette M, et al. Effectiveness and tolerability of prolonged linezolid treatment for chronic osteomyelitis: a retrospective study. Clin Ther. 2006;28:1155–63.

    Article  PubMed  CAS  Google Scholar 

  52. Vercillo M, Patzakis MJ, Holtom P, Zalavras CG. Linezolid in the treatment of implant-related chronic osteomyelitis. Clin Orthop Relat Res. 2007;461:40–3.

    PubMed  Google Scholar 

  53. Soriano A, Gómez J, Gómez L, et al. Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections. Eur J Clin Microbiol Infect Dis. 2007;26:353–6.

    Article  PubMed  CAS  Google Scholar 

  54. Razonable RR, Osmon DR, Steckelberg JM. Linezolid therapy for orthopedic infections. Mayo Clin Proc. 2004;79:1137–44.

    PubMed  CAS  Google Scholar 

  55. Romero-Candau F, Perez-Ferri R, Madrigal J, Najarro F, Huesa F. Tratamiento con linezolid oral en osteomielitis postraumática. Rev Ortop Traumatol. 2007;51:105–9.

    Article  Google Scholar 

  56. Gómez J, Canovas E, Baños V, et al. Linezolid plus rifampin as a salvage therapy in prosthetic joint infections treated without removing the implant. Antimicrob Agents Chemother. 2011;55:4308–10.

    Article  PubMed  Google Scholar 

  57. Euba G, Murillo O, Fernández-Sabé N, et al. Long-term follow-up trial of oral rifampin-cotrimoxazole combination versus intravenous cloxacillin in treatment of chronic staphylococcal osteomyelitis. Antimicrob Agents Chemother. 2009;53:2672–6.

    Article  PubMed  CAS  Google Scholar 

  58. Nguyen S, Pasquet A, Legout L, et al. Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections. Clin Microbiol Infect. 2009;15:1163–9.

    Article  PubMed  CAS  Google Scholar 

  59. Martinez-Pastor JC, Muñoz-Mahamud E, Vilchez F, et al. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob Agents Chemother. 2009;53:4772–7.

    Article  PubMed  CAS  Google Scholar 

  60. Rimmelé T, Boselli E, Breilh D, et al. Diffusion of levofloxacin into bone and synovial tissues. J Antimicrob Chemother. 2004;53:533–5.

    Article  PubMed  Google Scholar 

  61. Vilchez F, Martínez-Pastor JC, Garcia-Ramiro S, et al. Outcome and predictors of treatment failure in early post-surgical prosthetic joint infections due to Staphylococcus aureus treated with debridement. Clin Microbiol Infect. 2011;17:439–44.

    Article  PubMed  CAS  Google Scholar 

  62. Garcia LG, Lemaire S, Kahl BC, et al. Pharmacodynamic evaluation of the activity of antibiotics against hemin- and menadione-dependent small-colony variants of Staphylococcus aureus in models of extracellular (broth) and intracellular (THP-1 monocytes) infections. Antimicrob Agents Chemother. 2012;56:3700–11.

    Article  PubMed  CAS  Google Scholar 

  63. Weiner M, Burman W, Luo C-C, et al. Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin. Antimicrob Agents Chemother. 2007;51:2861–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Soriano M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soriano, A. (2014). Antibiotics in Treatment of Periprosthetic Joint Infections. In: Springer, B., Parvizi, J. (eds) Periprosthetic Joint Infection of the Hip and Knee. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7928-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7928-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7927-7

  • Online ISBN: 978-1-4614-7928-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics