Skip to main content

Statistical Distribution of Defect Parameters

  • Chapter
  • First Online:
Bias Temperature Instability for Devices and Circuits

Abstract

The statistics of bias temperature instability (BTI) is derived within the “defect-centric” paradigm of device degradation. This paradigm is first briefly reviewed, drawing on similarities between BTI and random telegraph noise (RTN). The impact of a single trap on FET threshold voltage V th is then shown to follow an exponential distribution with the expectation value η. The properties of η, such as its area and gate oxide thickness dependences, are discussed. The statistics of multiple defects is then developed, assuming (1) the single-trap exponential distribution and (2) a Poisson distribution of the number of traps in each device. The properties of the resulting time-dependent total ΔV th statistics and its moments are then treated. Finally, the combined time-dependent and time-zero statistics of the total threshold voltage V th is discussed, together with its properties and a brief example of its implications for circuit performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, Int. Electron Devices Meeting Tech. Dig., 863–866 (1995).

    Google Scholar 

  2. A. Asenov, S. Roy, R. A. Brown, G. Roy, C. Alexander, C. Riddet, C. Millar, B. Cheng, A. Martinez, N. Seoane, D. Reid, M. F. Bukhori, X. Wang, and U. Kovac, “Advanced simulation of statistical variability and reliability in nano CMOS transistors”, Int. Electron Devices Meeting Tech. Dig. (2008).

    Google Scholar 

  3. K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari, and S. Mudanai, IEEE T. Electron Dev. 58, 2197 (2011).

    Article  Google Scholar 

  4. M. J. M. Pelgrom, A. C. J. Duinmaijer, and A, P. G. Welbers, IEEE J. Solid-State Circ. 24, 1433–1440 (1989).

    Google Scholar 

  5. S. E. Rauch, IEEE T. Dev. Mat. Rel. 7, 524 (2007).

    Article  Google Scholar 

  6. V. Huard C. Parthasarathy, C. Guerin, T. Valentin, E. Pion, M. Mammasse, N. Planes, L. Camus, Proc. IEEE Int. Rel. Phys. Symp., 289 (2008).

    Google Scholar 

  7. J. Franco, B. Kaczer, M. Toledano-Luque, Ph.J. Roussel, T. Grasser, J. Mitard, L..Ragnarsson, L. Witters, T. Chiarella, M. Togo, N. Horiguchi, M.F. Bukhori, A. Asenov, and G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp., (2012).

    Google Scholar 

  8. B. Kaczer, J. Franco, M. Toledano-Luque, Ph. J. Roussel, M. F. Bukhori, A. Asenov, B. Schwarz, M. Bina, T. Grasser, G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp. (2012).

    Google Scholar 

  9. B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, Ph.J. Roussel and G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., 55 (2009).

    Google Scholar 

  10. B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken and H. Reisinger, Proc. IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., 26 (2010).

    Google Scholar 

  11. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner,; F. Schanovsky, J. Franco, P. J. Roussel, and M. Nelhiebel, “Recent advances in understanding the bias temperature instability”, Int. Electron Devices Meeting Tech. Dig., 4.4.1–4.4.4 (2010).

    Google Scholar 

  12. M. Toledano-Luque, B. Kaczer, J. Franco, Ph.J. Roussel, M. Bina, T. Grasser, M. Cho, P. Weckx, and G. Groeseneken, accepted to Proc. VLSI Symp., 2013.

    Google Scholar 

  13. J. Franco, B. Kaczer, M. Toledano-Luque, Ph. J. Roussel, G. Groeseneken, B. Schwarz, M. Bina, M. Waltl, P.-J. Wagner, T. Grasser, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc. (2013).

    Google Scholar 

  14. P. Weckx, B. Kaczer, M. Toledano-Luque, T. Grasser, Ph. J. Roussel, H. Kukner, P. Raghavan, F. Catthoor, and G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., (2013).

    Google Scholar 

  15. B. Kaczer, T. Grasser, J. Franco, M. Toledano-Luque, Ph. J. Roussel, M. Cho, E. Simoen, G. Groeseneken, J. Vac. Sci. Technol. B 29, 01AB01 (2011).

    Google Scholar 

  16. B. Kaczer, S. Mahato, V. Valduga de Almeida Camargo, M. Toledano-Luque, Ph. J. Roussel, T. Grasser, F. Catthoor, P. Dobrovolny, P. Zuber, G. Wirth, and G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp., XT.3.1–XT.3.5 (2011).

    Google Scholar 

  17. V. Huard, N. Ruiz, F. Cacho, and E. Pion, Microel. Reliab. 51, 1425–1439 (2011).

    Article  Google Scholar 

  18. A. E. Islam and M. A. Alam, J.Comput.Electron. 10, pp. 341–351 (2011).

    Google Scholar 

  19. M. Nafria, R. Rodriguez, M. Porti, J. Martin-Martinez, M. Lanza, and X. Aymerich, Int. Electron Devices Meeting Tech. Dig., 6.3.1–6.3.4 (2011).

    Google Scholar 

  20. M. Toledano-Luque, B. Kaczer, J. Franco, Ph. J. Roussel, T. Grasser, and G. Groeseneken, Microel. Reliab. 52, 1883–1890 (2012).

    Article  Google Scholar 

  21. K.B. Sutaria, J.B. Velamala, V. Ravi, Y. Cao (2013) Multi-level reliability simulation for IC design. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  22. G. Wirth, Y. Cao, J.B. Velamala, K.B. Sutaria, T. Sato (2013) Charge trapping in MOSFETS: BTI and RTN modeling for circuits. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  23. J. Martin-Martinez, R. Rodriguez, M. Nafria (2013) Simulation of BTI related time-dependent variability in CMOS circuits. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  24. B. Kaczer, Ph. J. Roussel, T. Grasser and G. Groeseneken, IEEE Electron Device Lett. 31, 411 (2010).

    Article  Google Scholar 

  25. T. Grasser, P.-J. Wagner, H. Reisinger, Th. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer, Int. Electron Devices Meeting Tech. Dig., 27.4.1–27.4.4 (2011).

    Google Scholar 

  26. T. Grasser (2013) The capture/emission time map approach to the bias temperature instability. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  27. H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder, Proc. IEEE Int. Reliab. Phys. Symp., 7 (2010).

    Google Scholar 

  28. T. Grasser, H. Reisinger, W. Goes, Th. Aichinger, Ph. Hehenberger, P.-J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, Int. Electron Devices Meeting Tech. Dig. (2009).

    Google Scholar 

  29. B. Kaczer, T. Grasser, P.J. Roussel, J. Martin-Martinez, R. O'Connor, B.J. O'Sullivan and G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp. (IRPS) Proc., 20 (2008).

    Google Scholar 

  30. H. Reisinger (2013) The time dependent defect spectroscopy. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  31. T. Grasser, Microel. Reliab. 52, 39–70 (2012).

    Article  Google Scholar 

  32. M. Toledano-Luque, B. Kaczer, Ph.J. Roussel, J. Franco, T. Grasser, C. Vrancken, N. Horiguchi, and G. Groeseneken, Proc. IEEE Int. Reliab. Phys. Symp., 4A.2.1–4A.2.8 (2011).

    Google Scholar 

  33. T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer, Proc. IEEE Int. Reliab. Phys. Symp., 16 (2010).

    Google Scholar 

  34. M. Toledano-Luque, B. Kaczer, J. Franco, P. J. Roussel, T. Grasser, T. Y. Hoffmann, and G. Groeseneken, Proc. VLSI Symp., 152–153 (2011).

    Google Scholar 

  35. A. Asenov, R. Balasubramaniam, A. R. Brown, and J. H. Davies, IEEE T. Electron Dev. 50, 839 (2003).

    Article  Google Scholar 

  36. K. Takeuchi, T. Nagumo, S. Yokogawa, K. Imai, and Y. Hayashi, Proc. VLSI Symp. Tech., 54 (2009).

    Google Scholar 

  37. A. Ghetti, C. M. Compagnoni, A. S. Spinelli, and A. Visconti, IEEE T. Electron Dev. 56, 1746–1752 (2009).

    Article  Google Scholar 

  38. http://www.ibiblio.org/e-notes/Perc/contour.htm

  39. K. Sonoda, M. Tanizawa, K. Ishikawa, and Y. Inoue, Int. Conf. Simulation of Semiconductor Processes and Devices (SISPAD), 19–22 (2011).

    Google Scholar 

  40. J. Franco, B. Kaczer, M. Toledano-Luque, Ph. J. Roussel, T. Kauerauf, J. Mitard, L. Witters, T. Grasser, and G. Groeseneken, IEEE T. Electron. Dev. 60, 405 (2013).

    Article  Google Scholar 

  41. J. Franco, B. Kaczer (2013) NBTI in (Si)Ge channel devices. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  42. M. Toledano-Luque, B. Kaczer, Ph. J. Roussel, J. Franco, L. . Ragnarsson, T. Grasser, and G. Groeseneken, Appl. Phys. Lett. 98, 183506 (2011).

    Article  Google Scholar 

  43. S.E. Rauch III (2013) BTI induced statistical variations. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  44. M. Toledano-Luque, B. Kaczer (2013) Characterization of individual traps in high-κ oxides. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  45. A. Kerber and T. Nigam, IEEE Int. Reliab. Phys. Symp. (IRPS) Proc. (2013).

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the invaluable input of Philippe Roussel for statistics; Prof. Tibor Grasser for general discussions and trap kinetics in particular; Prof. Guido Groeseneken for discussion and support; and Prof. Francky Catthoor, Dr. Praveen Raghavan, and Halil Kukner for a circuit designer’s perspective.

This work was performed as part of imec’s Core Partner Program. It has been in part supported by the European Commission under the 7th Framework Programme (collaborative project MORDRED, contract No. 261868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kaczer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaczer, B., Toledano-Luque, M., Franco, J., Weckx, P. (2014). Statistical Distribution of Defect Parameters. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics