Skip to main content

Statistical Characterization of BTI-Induced High-k Dielectric Traps in Nanoscale Transistors

  • Chapter
  • First Online:
Book cover Bias Temperature Instability for Devices and Circuits

Abstract

Statistical behavior of BTI-induced high-k dielectric traps in nanometer MOSFETs is characterized. We measure individual trapped charge emission times and single-trapped charge-induced Vt shifts in BTI recovery. Statistical distributions of BTI trap characteristics such as trap spatial and energy distributions and trapped charge activation energy in emission are extracted. We compare the amplitudes of BTI and RTN single-charge-induced ΔVt. BTI-induced ΔVt exhibits a larger amplitude distribution tail. An explanation will be given by use of 3D atomistic numerical simulation. In addition, we find that Vt degradation in BTI stress exhibits two stages. The first stage has logarithmic stress time dependence and is believed due to the charging of preexisting high-k dielectric traps. The second stage follows power-law time dependence, which is attributed to dielectric trap creation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Zafar, Y. H. Kim, V. Narayanan, C. Cabral Jr., V. Paruchuri, B. Doris, J. Stathis, A. Callegari and M. Chudzik, Tech. Dig. VLSI Symp. 2006, p. 23.

    Google Scholar 

  2. S. Zafar, A. Kumar, E. Gusev and E. Cartier, IEEE Trans. Device Mater. Reliab. 5, 45 (2005).

    Article  Google Scholar 

  3. B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken and M. Goodwin, IEEE Int. Reliab. Phys. Symp. Proc. 2005, p. 381.

    Google Scholar 

  4. A. E. Islam, H. Kufluoglu, D. Varghese, S. Mahapatra and M. A. Alam, IEEE Trans. Electron Devices 54, 2143 (2007).

    Article  Google Scholar 

  5. S. Mahapatra, A. E. Islam, S. Deora, V. D. Maheta, K. Joshi and M. A. Alam, IEEE Int. Reliab. Phys. Symp. Proc. 2011, p. 614.

    Google Scholar 

  6. H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin and C. Schlunder, IEEE Int. Reliab. Phys. Symp. Proc. 2006, p. 448.

    Google Scholar 

  7. C. Shen, M.-F. Li, X. P. Wang, Y.-C. Yeo, and D.-L. Kwong, IEEE Electron Device Lett. 27, 55 (2006).

    Google Scholar 

  8. T. Wang, C.T. Chan, C.J. Tang, C.W. Tsai, H.C.-H. Wang, M.H. Chi and D.D. Tang, IEEE Trans. Electron Devices 53, 1073 (2006).

    Google Scholar 

  9. C. T. Chan, C. J. Tang, C. H. Kuo, H. C. Ma, C. W. Tsai, H. C. H. Wang, M. H. Chi, and Tahui Wang, IEEE Int. Reliab. Phys. Symp. Proc. 2005, p. 41.

    Google Scholar 

  10. C. T. Chan, H. C. Ma, C. J. Tang and T. Wang, Tech. Dig. VLSI Symp. 2005,p. 90.

    Google Scholar 

  11. J. P. Chiu, Y. H. Liu, H. D. Hsieh, C. W. Li, M. C. Chen and Tahui Wang, IEEE Trans. Electron Devices 60, 978 (2013).

    Google Scholar 

  12. T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes and B. Kaczer, IEEE Int. Reliab. Phys. Symp. Proc. 2010, p.16.

    Google Scholar 

  13. C.T. Chan, C.J. Tang, T. Wang, H.C.-H. Wang and D.D. Tang, IEEE Trans. Electron Devices 53, 1340 (2006).

    Google Scholar 

  14. B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken and H. Reisinger, IEEE Int. Reliab. Phys. Symp. Proc. 2010, p. 26.

    Google Scholar 

  15. S. M. Amoroso, L. Gerrer, S. Markov, F. Adamu-Lema, and A. Asenov, in Proceedings of the ESSDERC. 2012, p. 109.

    Google Scholar 

  16. J. P. Chiu, Y. T. Chung, T. Wang, M. C. Chen, C. Y. Lu and K. F. Yu, IEEE Electron Device Lett. 33, 176 (2012).

    Google Scholar 

  17. B. Kaczer, Ph. J. Roussel, T. Grasser and G. Groeseneken, IEEE Electron Device Lett. 31, 411 (2010).

    Article  Google Scholar 

  18. M.A. Alam, Tech. Dig. - Int. Electron Devices Meet. 2003, p. 345.

    Google Scholar 

  19. H. Y. Yu, Y. T. Hou, M. F. Li and D.-L. Kwong, IEEE Electron Device Lett. 23, 285 (2002).

    Google Scholar 

  20. Y. T. Hou, M. F. Li, H. Y. Yu, Y. Jin and D.-L. Kwong, Tech. Dig. - Int. Electron Devices Meet. 2002, p. 731.

    Google Scholar 

  21. Technology Computer Aided Design (TCAD), Integrated Systems Engineering AG, Zurich.

    Google Scholar 

  22. Y. Y. Liao, S. F. Horng, Y. W. Chang, T. C. Lu, K. C. Chen, T. Wang and C. Y. Lu, IEEE Electron Device Lett. 28, 828 (2007).

    Google Scholar 

  23. J.P. Chiu, C. W. Li and Tahui Wang, Appl. Phys. Lett. 101, 082906 (2012).

    Google Scholar 

  24. T. Siddiqua and S. Gurumurthi, IEEE Trans. Very Large Scale Integration (VLSI) Syst. 20, 616 (2012).

    Google Scholar 

  25. S. Lee, H.-J. Cho, Y. Son, D. S. Lee, and H. Shin, Tech. Dig. - Int. Electron Devices Meet. 2009, p. 763.

    Google Scholar 

  26. H.-C. Ma, Y.-L. Chou, J.-P. Chiu, Y.-T. Chung, T.-Y. Lin, T. Wang, Y.-P. Chao, K.-C. Chen, and C.-Y. Lu, IEEE Trans. Electron Devices 58, 623 (2011).

    Google Scholar 

  27. M. A. Alam and S. Mahapatra, Microelectron. Reliab. 45, 71 (2005).

    Google Scholar 

  28. C. T. Chan, C. J. Tang, Tahui Wang, H. C.-H. Wang, and D.D. Tang, Tech. Dig. - Int. Electron Devices Meet. 2005, p. 571.

    Google Scholar 

  29. A. Shanware, M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, H. Bu, M. J. Bevan, R. Khamankar, S. Aur, P. E. Nicollian, J. McPherson, and L. Colombo, IEEE Int. Reliab. Phys. Symp. Proc. 2003, p. 208.

    Google Scholar 

  30. R. Degraeve, A. Kerber, P. Roussell, E. Cartier, T. Kauerauf, L. Pantisano, G. Groeseneken, Tech. Dig. - Int. Electron Devices Meet. 2003, p. 935.

    Google Scholar 

  31. R. Degraeve, F. Crupi, D. H. Kwak, and G. Groeseneken, Tech. Dig. VLSI Symp. 2004, p. 140.

    Google Scholar 

  32. T. Yamaguchi, I. Hirano, R. Iijima, K. Sekine, M. Takayanagi, K. Eguchi, Y. Mitani, and N. Fukushima, IEEE Int. Reliab. Phys. Symp. Proc. 2005, p. 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, T., Chiu, JP., Liu, YH. (2014). Statistical Characterization of BTI-Induced High-k Dielectric Traps in Nanoscale Transistors. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics