Skip to main content

Heterosis

  • Chapter
  • First Online:
  • 3200 Accesses

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 5))

Abstract

The large-scale adoption of hybrid rice in China over the past 4 decades, and in India, Bangladesh, Vietnam, and other Asian countries in recent years, has greatly contributed to improved food availability and farmers’ profitability in these countries [1]. The superior performance, or heterosis, of elite hybrids is usually featured by two important characteristics. First, elite hybrids possess greatly elevated yield potential. As much as 100 % or greater mid-parent heterosis (=F1 – MP, where MP is the mean of the parents) and over 40 % high-parent heterosis (=F1 – HP, where HP is the higher parent value) have been frequently observed in experimental plots [2–5]. It has been estimated that hybrids can outyield conventional cultivars by 30–40 % in production fields [6]. Second, elite hybrids often show wider adaptability, due to more resistance to biotic and abiotic stresses than inbreds, and thus perform more stably.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pandey S, Bhandari H (2009) Economics of hybrid rice in tropical Asia: major issues and opportunities. In: Xie F, Hardy B (eds) Accelerating hybrid rice development. International Rice Research Institute, Los Banos, Philippines, pp 535–548

    Google Scholar 

  2. Zhang Q, Gao YJ, Yang SH, Ragab RA, Saghai Maroof MA, Li ZB (1994) A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet 89(2):185–192

    Google Scholar 

  3. Zhang Q, Gao YJ, Saghai Maroof MA, Yang SH, Li JX (1995) Molecular divergence and hybrid performance in rice. Mol Breed 1(2):133–142

    Article  Google Scholar 

  4. Zhang Q, Zhou Z, Yang G, Xu C, Liu K, Saghai Maroof MA (1996) Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor Appl Genet 93(8):1218–1224

    Article  Google Scholar 

  5. Zhao MF, Li XH, Yang JB et al (1999) Relationship between molecular marker heterozygosity and hybrid performance in intra- and inter-subspecific crosses of rice. Plant Breed 118(2):139–144

    Article  Google Scholar 

  6. Yuan LP (1998) Hybrid rice breeding in China. In: Virmani SS, Siddiq EA, Muralidharan K (eds) Advances in hybrid rice technology. International Rice Research Institute, Manila, Philippines, pp 27–33

    Google Scholar 

  7. Saghai Maroof MA, Yang GP, Zhang Q, Gravois KA (1997) Correlation between molecular marker distance and hybrid performance in U.S. southern long grain rice. Crop Sci 37(1):145–150

    Article  Google Scholar 

  8. Ikehashi H, Araki H (1984) Varietal screening for compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed 34(3):304–312

    Google Scholar 

  9. Xiao J, Li J, Yuan L, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140(2):745–754

    PubMed  CAS  Google Scholar 

  10. Li ZK, Luo LJ, Mei HW et al (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice I. Biomass and grain yield. Genetics 158(4):1737–1753

    PubMed  CAS  Google Scholar 

  11. Luo LJ, Li ZK, Mei HW et al (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice II. Grain yield components. Genetics 158(4):1755–1771

    PubMed  CAS  Google Scholar 

  12. Yu SB, Li JX, Xu CG et al (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 94(17):9226–9231

    Article  PubMed  CAS  Google Scholar 

  13. Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang QF (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162(4):1885–1895

    PubMed  CAS  Google Scholar 

  14. Hua JP, Xing YZ, Wu W et al (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 100(5):2574–2579

    Article  PubMed  CAS  Google Scholar 

  15. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90(23): 10972–10976

    Article  PubMed  CAS  Google Scholar 

  16. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136(4):1457–1468

    PubMed  CAS  Google Scholar 

  17. Zou F, Gelfond JAL, Airey DC et al (2005) Quantitative trait locus analysis using recombinant inbred intercrosses. Genetics 170(3):1299–1311

    Article  PubMed  CAS  Google Scholar 

  18. Xie W, Feng Q, Yu H et al (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A 107(23):10578–10583

    Article  PubMed  CAS  Google Scholar 

  19. Yu H, Xie W, Wang J et al (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6(3):e17595

    Article  PubMed  CAS  Google Scholar 

  20. Zhou G, Chen Y, Yao W et al (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 109(39):15847–15852

    Article  PubMed  CAS  Google Scholar 

  21. Xiong LZ, Yang GP, Xu CG, Zhang Q, Saghai Maroof MA (1998) Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed 4(2):129–136

    Article  CAS  Google Scholar 

  22. Huang Y, Zhang L, Zhang J et al (2006) Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol 62(4–5):579–591

    Article  PubMed  CAS  Google Scholar 

  23. Huang Y, Li L, Chen Y, Li X, Xu C, Wang S, Zhang Q (2006) Comparative analysis of gene expression at early seedling stage between a rice hybrid and its parents using a cDNA microarray of 9198 uni-sequences. Sci China C Life Sci 49(6):519–529

    Article  PubMed  CAS  Google Scholar 

  24. Wei G, Tao Y, Liu G et al (2009) A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci U S A 106(19):7695–7701

    Article  PubMed  CAS  Google Scholar 

  25. Song GS, Zhai HL, Peng YG et al (2010) Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol Plant 3(6):1012–1025

    Article  PubMed  CAS  Google Scholar 

  26. Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261(3):439–446

    Article  PubMed  CAS  Google Scholar 

  27. He G, Zhu X, Elling AA et al (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22(1):17–33

    Article  PubMed  CAS  Google Scholar 

  28. Rood SB, Buzzell RI, Mander LN, Pearce D, Pharis RP (1988) Gibberellins: a phytohormonal basis for heterosis in maize. Science 241(4870):1216–1218

    Article  PubMed  CAS  Google Scholar 

  29. Ma Q, Hedden P, Zhang Q (2011) Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiol 156(4):1905–1920

    Article  PubMed  CAS  Google Scholar 

  30. Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42(5):459–463

    Article  PubMed  CAS  Google Scholar 

  31. Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  PubMed  CAS  Google Scholar 

  32. Xue W, Xing Y, Weng X et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Fan C, Xing Y et al (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43(12):1266–1269

    Article  PubMed  CAS  Google Scholar 

  34. Vaughan DA (1994) The wild relatives of rice: a genetic resource handbook. International Rice Research Institute, Manila

    Google Scholar 

  35. Zhang Q, Saghai Maroof MA, Lu TY, Shen BZ (1992) Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet 83(4):495–499

    Article  Google Scholar 

  36. Zhang Q, Liu KD, Yang GP, Saghai Maroof MA, Xu CG, Zhou ZQ (1997) Molecular marker diversity and hybrid sterility in indica-japonica rice crosses. Theor Appl Genet 95(1):112–118

    Article  CAS  Google Scholar 

  37. Huang X, Zhao Y, Wei X et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32–39

    Article  Google Scholar 

  38. Liu KD, Zhou ZQ, Xu CG, Zhang Q, Saghai Maroof MA (1996) An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica 90(3):275–280

    Article  Google Scholar 

  39. Ouyang Y, Chen J, Ding J, Zhang Q (2009) Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. Chin Sci Bull 54(14):2332–2341

    Article  CAS  Google Scholar 

  40. Ouyang Y, Liu Y, Zhang Q (2010) Hybrid sterility in plant: stories from rice. Curr Opin Plant Biol 13(2): 186–192

    Article  PubMed  Google Scholar 

  41. Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci USA 104(42):16402–16409

    Article  PubMed  CAS  Google Scholar 

  42. Ashikari M, Sakakibara H, Lin S et al (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745

    Article  PubMed  CAS  Google Scholar 

  43. Mao H, Sun S, Yao J et al (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107(45):19579–19584

    Article  PubMed  CAS  Google Scholar 

  44. Wang S, Wu K, Yuan Q et al (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44(8):950–954

    Article  PubMed  CAS  Google Scholar 

  45. Liu T, Shao D, Kovi MR, Xing Y (2010) Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativa L.). Theor Appl Genet 120(5):933–942

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Y, Luo L, Liu T, Xu C, Xing Y (2009) Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds. Theor Appl Genet 118(6):1035–1044

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y, Luo L, Xu C, Zhang Q, Xing Y (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113(2):361–368

    Article  PubMed  CAS  Google Scholar 

  48. Liu T, Mao D, Zhang S, Xu C, Xing Y (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet 118(8):1509–1517

    Article  PubMed  CAS  Google Scholar 

  49. Tian F, Zhu Z, Zhang B et al (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff). Theor Appl Genet 113(4):619–629

    Article  PubMed  CAS  Google Scholar 

  50. Bai X, Luo L, Yan W, Kovi MR, Zhan W, Xing Y (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet 11(1):16

    Article  PubMed  Google Scholar 

  51. Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120(5): 875–893

    Article  PubMed  CAS  Google Scholar 

  52. Xie X, Jin F, Song M-H et al (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116(5):613–622

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a grant from the National Natural Science Foundation of China (30921091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifa Zhang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhu, D., Zhang, Q. (2013). Heterosis. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_17

Download citation

Publish with us

Policies and ethics